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Abstract

Background: Accurate and unbiased assessment of tumor response to treatment is essen-

tial in cancer clinical trials. The Response Evaluation Criteria in Solid Tumors (RECIST)

is the standard for evaluating tumor response, and assessments are commonly performed

both by local site investigators and by blinded independent central reviewers. While RE-

CIST has been widely adopted, questions remain about its reliability and the consistency

of tumor response classification across different raters. Site investigators in particular may

exhibit bias in tumor measurement or identification compared to blinded central review-

ers. Previous studies have either individually examined inter-rater reliability or compared

site investigator and central reviewer assessments, but gaps remain in terms of meta-

analyzing reliability, assessing site investigator and central reviewer discrepancies, and in

understanding the impact of RECIST’s threshold definitions on classification stability.

Purpose: This study aims to address these gaps through three main analyses. First,

we conduct a general meta-analysis of inter-rater reliability for RECIST to establish an

overall estimate of agreement. Second, we analyze discrepancies between site investigator

and central reviewer assessments of tumor response, building on existing literature and

providing new data from three cancer clinical trials. Third, we perform a sensitivity

analysis to evaluate how changes in the disease response and progression thresholds affect

the classification of tumor response. Together, these analyses provide a comprehensive

assessment of RECIST reliability and its implications for clinical trial outcomes.

Methods: First, systematic review of the literature was conducted to assess the inter-rater

reliability (IRR) of RECIST in terms of Cohen’s and Fleiss’ kappa statistics. Second, a

retrospective analysis of three cancer clinical trials was performed, comparing site inves-

tigator and central reviewer assessments of tumor response. Specifically, trial endpoints

of time to progression, time to response, and duration of response were analyzed for dif-

ferences in hazard ratios between site investigators and central reviewers. Differences in

hazard ratios between raters within studies were scrutinized, and these differences were
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synthesized into meta-analyses. Traditional null-hypothesis significance testing as well as

equivalence testing on a hazard ratio range of [0.80, 1.25] were performed to assess the

significance of differences (or equivalence) in hazard ratios. Differences between raters in

objective response rate were also analyzed using Cochran’s Q and McNemar’s tests. Third,

a sensitivity analysis was conducted to evaluate how changes in RECIST’s disease response

and progression thresholds affect the classification of tumor response. This involved sim-

ulating different threshold definitions and assessing their impact on the aforementioned

IRR and trial endpoint analyses.

Results: The meta-analysis of inter-rater reliability for RECIST revealed a substantial

level of agreement across studies, with a pooled kappa coefficient of 0.66. Of the included

studies, 4 of them were directly from clinical trials, and exhibited clustering around a lower

kappa value of ~0.45. The analysis of discrepancies between site investigator and central

reviewer assessments showed that while there were some significant differences in haz-

ard ratios within individual studies, no systematic differences were observed. Moreover,

we were able to demonstrate equivalence between site investigators and central review-

ers in the time to progression and time to response outcomes. The sensitivity analyses

demonstrated that changes in RECIST’s threshold definitions do not significantly affect

the differences between site investigators and central reviewers with regards to tumor

response classification.

Conclusion: IRR analyses show substantial overall agreement between raters, but this

might be lower in the real-world setting of clinical trials. Follow-up analyses of trial

endpoints, however, do not point to systematic differences between site investigators and

central reviewers, but individual studies still may show differences. These findings are

consistent with previous literature, which has shown that RECIST is overall a reliable

tool for assessing tumor response, but also highlight that individual studies likely benefit

from the inclusion of blinded central reviewers. The sensitivity analyses further confirm

that RECIST’s arbitrary threshold definitions do not significantly impact classification

stability, suggesting that RECIST remains a robust tool for evaluating tumor response in

clinical trials.
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1. Introduction

This thesis examines the reliability of the Response Evaluation Criteria in Solid Tumors 1.1

(RECIST) (1), a widely used tool for assessing tumor response in oncology clinical trials.

Reliable assessment of tumor response is crucial for evaluating treatment efficacy, yet

concerns exist regarding the consistency of RECIST interpretations across different raters.

Beginning with a general overview of cancer biology, global cancer epidemiology, and

the challenges of measuring treatment outcomes in oncological studies, this Introduction

establishes the context for understanding the importance of standardized response criteria.

It further explores the role of clinical trials in drug development, regulatory requirements

for tumor response assessment, and the operational challenges of implementing RECIST

in multi-center trials. Following this, the express purpose of this thesis is articulated.

The subsequent Methods chapter details the research approach used to address the re-

liability questions, including a systematic literature review on inter-rater reliability of

RECIST, retrospective analysis of discrepancies between site investigator and central re-

viewer tumor assessments using RECIST in several clinical trials, and sensitivity analyses

examining how threshold definitions affect classification differences in the context of these

trials. Following the presentation of the statistical methodology, the Results section re-

ports findings from the meta-analysis of inter-rater reliability, quantifies site vs. central

reviewer assessment discrepancies, and evaluates how varying threshold definitions impact

response categorization.

The Discussion chapter contextualizes these findings within existing literature and explores

their implications for clinical trials and research methodology while also highlighting some

of the limitations of this thesis. Finally, the Conclusion synthesizes the key insights,

readdresses the primary research questions, and offers recommendations for enhancing the

reliability of tumor response assessment in future oncology trials.
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1.1. A Brief Primer on Cancer

Before diving into the specifics of tumor response assessment and the reliability of RECIST,

it is necessary to review several aspects of cancer as a disease and the value in developing

treatments against cancers. This section thus provides an elementary overview of cancer

biology, its global burden, and the challenges associated with treatment and response

assessment.

1.1.1. Cancer 101

Cancer is fundamentally a disease of dysregulated cellular behavior, rooted in alterations

at the molecular and cellular levels (2). Under normal physiological conditions, cells

adhere to regulatory pathways that govern their growth, division, differentiation, and

death. In contrast, cancer arises when these regulatory systems are disrupted, leading to

unrestrained cell proliferation and, ultimately, tumor formation (2). The transformation

from a normal to a malignant cell is typically driven by the accumulation of genetic and

epigenetic mutations that interfere with key cellular processes (2,3). These mutations often

activate oncogenes which promote cell division, and they can inactivate tumor suppressor

genes which ordinarily function to restrain growth or induce apoptosis1 in damaged cells

(3,4). These cells thus possess the ability to proliferate indefinitely, resist apoptosis, and

ignore signals that would normally inhibit growth.

Metastasis, the process by which cancer cells spread beyond the primary tumor site, rep-

resents one of the most clinically significant and challenging aspects of cancer (5,6). Once

metastasized, tumors are often less responsive to localized treatments such as surgery or

radiation, necessitating systemic therapies that are typically less targeted and more toxic

(6). Metastasis also correlates strongly with poorer prognosis, and its presence at diagnosis

is a key determinant of clinical outcomes (5). Complicating the diagnosis and treatment

of cancer is its remarkable heterogeneity (6). Cancer is not a singular disease but rather a

collection of disorders characterized by diverse genetic profiles and clinical behaviors (5,6).

Even within a single type of cancer, significant variation can exist between patients and

even within the different tumors of a single patient (5,7).

It is also important to distinguish between two broad categories of cancer: solid tumors

(i.e. carcinomas and sarcomas) and hematological malignancies (2). Solid tumors arise
1Apoptosis is a form of programmed cell death that occurs in multicellular organisms, allowing for the

removal of damaged or unwanted cells.
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in tissues and organs such as the breast, colon, lungs, or in connective tissue such as

muscle and bone although this latter grouping, so-called, sarcomas, are far less common

(2). In either case though, the cancer from these solid tumors tends to form localized

masses (2). In contrast, hematological malignancies, such as leukemia and lymphoma,

originate in the blood or bone marrow and typically disseminate early in the disease

process (2). Given their distinct biological behaviors, diagnostic criteria, and therapeutic

strategies, this thesis will focus exclusively on cancers that present as solid tumors. This

focus will allow for a more coherent investigation into the cellular and molecular dynamics

specific to solid tumor biology and their implications for diagnosis, treatment, and patient

outcomes.

1.1.2. Cancer in Context: Global Burden

While the biological bases of cancer are generally well understood, the disease continues to

present a substantial global public health challenge. Cancer represents one of the leading

causes of morbidity and mortality worldwide (8), with millions of new cases diagnosed

annually. Current estimates indicate approximately 20 million incident cases of cancer

per year globally alongside an estimated 9 million annual deaths (9). Of these, the 5

most common types include lung, breast, colorectal, prostate, and stomach cancers, which

together account for nearly half of all new cases, and generally all present as solid tumors

(9).

These figures, though significant, represent only point estimates in an evolving epidemio-

logical landscape. Global trends in cancer incidence and mortality have shown concerning

increases over recent decades, with projections suggesting this burden may rise by up to

75% to 35 million incident cases by 2050 (9). However, these statistics exhibit consid-

erable variation across cancer types, geographic regions, and healthcare access levels (9).

Improved diagnostic capabilities and expanded access to healthcare systems might con-

tribute to higher reported incidence rates in some regions (10), though the overall trend

toward increasing cancer burden appears consistent (9).

Given its current and future profound impact on global health and an economic burden

in the trillions (11), cancer remains a critical priority for healthcare systems, researchers,

and policymakers worldwide with nearly 4 billion USD in funding in 2024 from the US

government, UK government, and European Commission alone (12). The United States’

National Institutes of Health dominates this figure with over 3 billion USD allocated
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to cancer research per year (12), accounting for approximately 10% of the total NIH

budget (12,13). The scale of these investments underscores the urgency of developing more

effective approaches to cancer diagnosis, treatment, and monitoring including improved

methods for assessing treatment response in clinical settings.

1.1.3. Treatment Challenges

Despite remarkable advances in cancer research and substantial ongoing investment (14),

cancer remains one of medicine’s most formidable challenges due to its inherent complexity

and heterogeneity (14,15). Each tumor possesses a unique genomic profile with distinct

mutations and cellular characteristics that can vary both between patients with the same

cancer type and even within different regions of a single tumor (3,15). This molecular

diversity means treatments effective for one patient may fail in another, even if their

clinical presentations are similar (15).

The available treatment options for cancer are diverse to meet the diversity of tumor char-

acteristics, and can generally be divided into the so-called “pillars” of cancer treatment.

Different authors appear to define different categories and quantities of pillars (16,17), but

surgery, radiation therapy, chemotherapy, and immunotherapy, appear to be agreed-upon

pillars with targeted therapy, hormone therapy, and cell therapy also being included at

times (17). Regardless of the classification system used, each of these treatment modalities

has its own strengths and limitations; the choice of treatment often depends on the spe-

cific characteristics of the tumor, its stage, and the patient’s overall health (17). Surgical

interventions, for example, can potentially be curative for localized disease, but cannot

address metastases (18). Radiation therapy risks damaging adjacent healthy tissues (18),

while chemotherapy often lacks specificity, causing substantial global toxicity (16). With-

out going into detail of the other modalities, it suffices to say that each different treatment

comes with its own set of positives and negatives that must be weighed in the context of

the cancer being treated and the needs of the individual patient receiving treatment.

Given the careful balancing act required to provide treatments that provide therapeutic

benefit without excessive downsides, a central concern in cancer treatment is thus deter-

mining the effectiveness of a given therapy. This is particularly challenging in oncology,

where treatment responses can be complex and multifaceted (19,20). Unlike many other

medical conditions, cancer treatments often do not yield immediate or straightforward

outcomes such as psuedoprogression, wherein tumor sizes on imaging might swell as a
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direct result of the treatment rather than due to true progression (21). Moreover, tumors

may shrink, stabilize, or even grow despite treatment, and these changes can occur at

different rates depending on the individual patient and the specific therapy used (4,21).

Current evaluation methods, particularly imaging-based assessments of tumor burden, in-

troduce additional variables related to technique and interpretation, emphasizing the need

for standardized and validated criteria like RECIST while acknowledging their inherent

limitations.

1.2. Measuring Tumor Response in Solid Tumors: RECIST

As the previous section highlighted, determining the effectiveness of cancer therapies

presents unique challenges due to the complex and variable nature of tumor responses.

Given these challenges, standardized assessment tools become essential for consistent eval-

uation across different clinical settings. While the discussions of RECIST criteria and the

broader challenges of measuring tumor response in clinical trials are inherently intertwined,

we begin by examining RECIST itself as a framework, assuming the reader has at least

a passing familiarity with clinical trials, and we will address specific challenges of clinical

trials later in this Introduction.

This section explores the historical context that necessitated the development of standard-

ized response criteria, followed by a detailed overview of RECIST’s technical specifications

and algorithmic structure. The discussion then extends to the practical implementation of

RECIST in clinical settings, focusing particularly on inter-rater reliability challenges, dis-

crepancies between site investigator and central reviewer assessments, and the complexities

of applying these criteria consistently in clinical trials. Understanding both the technical

aspects of the RECIST algorithm and its real-world reliability challenges is essential for

interpreting the findings presented in this thesis and for appreciating their broader impli-

cations for clinical trial methodology, regulatory decision-making, and ultimately, patient

care in oncology.

1.2.1. Historical Context: The Need for Standardization

The development of standardized tumor response assessment criteria emerged largely over

the course of the early and mid 20th century in large part due to inconsistent and often

dangers evaluation methods (22). One of the earliest examples of attempts to standardize
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the general process of a clinical trial in the modern sense (i.e., with a proper control group,

clearly defined evaluation procedures, and objective endpoints) was published in 1960 by

Zubrod et al. (22,23). However, it wasn’t until 1979 that the WHO introduced the first

internationally recognized tumor response assessment standard, coinciding roughly with

the wider availability of computed tomography and magnetic resonance imaging (24,25).

Prior to this standardization, assessment of tumor response in oncology trials was highly

variable and often relied on subjective evaluations by local investigators (22), leading

to inconsistencies in how treatment effects were measured and reported across different

institutions and studies.

The establishment of the World Health Organization (WHO) tumor assessment criteria

in 1979 represented a pivotal advancement in oncology research. The WHO guidelines

introduced a bidimensional approach to measuring and assessing tumor burden, wherein

“the sum of the products of the two longest diameters in the perpendicular dimensions of

all tumors” was calculated (26) and four key response categories were defined: Complete

Response (CR), Partial Response (PR: �50% reduction), Stable Disease (SD), and Pro-

gressive Disease (PD: �25% increase or new lesions). Widely adopted and validated across

numerous tumor types, the WHO criteria provided a consistent framework that enabled

meaningful comparisons of treatment efficacy across trials for the first time (24).

Defining these cut-offs and categories is thus the measurement basis for calculating key trial

endpoints such as Objective Response Rate (ORR), Progression-Free Survival (PFS), and

Overall Survival (OS). These endpoints are critical for evaluating the effectiveness of new

therapies and for regulatory approval processes, as they provide standardized measures of

treatment benefit that can be compared across different studies and patient populations.

Of course, there is an implicit assumption in these WHO criteria that tumor burden

accurately reflects disease status and is predictive of outcomes; we discuss this topic in

detail in Section 1.3.2. Despite this significant step forward, the WHO system was not

without limitations. Its approach to measuring tumor response allowed for tracking of

an indeterminate number of solid tumors, was vulnerable to manual error, and imposed a

substantial time burden on clinicians (26,27). The practical demands of measuring multiple

diameters per lesion made assessments time-consuming, while variability in how different

observers selected and measured lesions further undermined reproducibility (27).
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1.2.2. Improving on WHO Criteria: RECIST

In response to the limitations of the WHO criteria, RECIST was developed as a simplified

and standardized framework for tumor response assessment with the first version, RECIST

1.0, introduced in 2000 (27). The most fundamental innovation of RECIST over the WHO

guidelines was the adoption of unidimensional measurements, where only the longest di-

ameter of target lesions would be measured, rather than the more complex bidimensional

approach required by WHO criteria (27). This change alone substantially reduced compu-

tational complexity and measurement error, making the assessment process more efficient

and reproducible across different investigators and trial sites.

RECIST 1.0 also introduced a more structured approach to lesion selection and catego-

rization. The criteria allowed for up to 10 target lesions (with a maximum of 5 per organ),

which would be measured and tracked throughout treatment (27). Additionally, the frame-

work formalized the concept of non-target lesions (lesions not directly measured but still

assessed qualitatively for response or progression) and established the identification of

new lesions as an absolute marker of disease progression (27). The calculation process was

dramatically simplified by introducing the sum of longest diameters (SLD) as the primary

metric, eliminating the need for the complex product calculations required by WHO cri-

teria (27). RECIST 1.0 also established new threshold values for calculating progression

(>20% increase) and response (>30% decrease) in target tumor SLDs (27). This new

framework was rapidly adopted across the oncology community due to its practicality,

efficiency, and capacity to enhance consistency in multi-center trials.

Building on nearly a decade of implementation experience, RECIST 1.1 was introduced

in 2009 to address certain limitations identified in the original criteria (1). This update

further streamlined the assessment process by reducing the maximum number of target

lesions from 10 to 5 (with no more than 2 per organ), which research had shown was

sufficient for accurate response assessment while further reducing measurement burden

(1). RECIST 1.1 also provided more detailed guidance on lesion selection, emphasizing

the importance of choosing measurable lesions and excluding non-measurable abnormali-

ties from target designation (1). RECIST 1.1 also established specific criteria for lymph

node assessment, specifying minimum size requirements and measurement approaches (1).

Additionally, it introduced an absolute minimum size threshold of 5mm for target lesions

that could not be accurately measured, and implemented a similar absolute increase re-

quirement to determine progression of disease (1). These refinements, alongside enhanced
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guidance on imaging techniques and assessment timing, further improved the standardiza-

tion and reliability of tumor response evaluation in clinical trials.

Having traced the evolution of RECIST from its origins to the current 1.1 version, we can

now examine its technical framework in detail. The historical development of these criteria

contextualizes why certain specifications were adopted and how they address previously

identified limitations in tumor assessment methodology. The following section provides a

comprehensive overview of RECIST 1.1’s operational structure. This detailed understand-

ing is essential for interpreting the reliability analyses presented later in this thesis, as the

technical nuances of RECIST-based lesion classification and response categorization are

of direct relevance to the consistency of assessments across different raters.

1.2.3. Technical Specifications of RECIST 1.1

As alluded to, lesions are classified into three distinct categories in RECIST 1.1, each with

specific roles in determining treatment response. These categories are target lesions, non-

target lesions, and new lesions. Target lesions and non-target lesions (if any) are evaluated

at baseline and subsequently measured at each imaging assessment, while new lesions are

identified based on their appearance during the course of treatment. The classification of

lesions into these categories is critical for the overall response assessment, as it determines

how changes in tumor burden are interpreted and categorized. The RECIST 1.1 framework

provides clear definitions and measurement guidelines for each lesion type, ensuring that

assessments are both standardized and reproducible across different clinical settings. The

paragraphs below provide a look at each category and the algorithmic approach used to

assess treatment response based on these classifications is presented in Table 1.1.

Target lesions form the quantitative foundation of the RECIST assessment. These

lesions must be measurable in at least one dimension and meet specific size criteria: a

minimum of 10 mm in the longest diameter for non-lymph nodes and 15 mm for lymph

nodes (where the longest perpendicular diameter is used). RECIST 1.1 limits the selection

to a maximum of five target lesions with no more than two per organ. These constraints

ensure focus on the most clearly measurable disease manifestations while maintaining a

manageable assessment burden. For these target lesions, the SLD is calculated at each

imaging assessment, and a Target Response is determined based on specific threshold

changes: CR requires disappearance of all target lesions; PR is defined as at least a 30%

decrease in SLD compared to baseline; PD occurs with at least a 20% increase in SLD
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compared to the smallest SLD recorded since treatment initiation (i.e. since the point of

nadir2); and SD applies when neither PR nor PD criteria are met.

Non-target lesions complement the quantitative assessment of target lesions. These

are abnormalities that, while identified at baseline, are not selected for measurement due

to their small size, irregular shape, or poor delineation. Although not measured directly,

non-target lesions are still evaluated qualitatively for response or progression. Their as-

sessment contributes significantly to the overall response determination, particularly when

“unequivocal progression” is observed, which can indicate PD regardless of target lesion

measurements.

New lesions constitute the third category and are defined as any lesions that were not

present at baseline but appear during treatment. The identification of new lesions serves

as an absolute marker of disease progression, overriding any positive changes observed

in target or non-target lesions. This categorical classification reflects the biological sig-

nificance of disease spread to new sites, which fundamentally indicates treatment failure

regardless of responses elsewhere.

The overall response assessment in RECIST 1.1 integrates findings from all three lesion

categories according to a predetermined algorithm. Table 1.1 summarizes the possible

combinations of target, non-target, and new lesion assessments and their corresponding

overall response classifications.

Target Lesions Non-Target Lesions New Lesions Overall Response

CR CR No CR

CR Non-CR/non-PD No PR

CR Not evaluated No PR

PR Non-PD or not all evaluated No PR

SD Non-PD or not all evaluated No SD

Not all evaluated Non-PD No NE

PD Any Yes or No PD

Any PD Yes or No PD

Any Any Yes PD

Table 1.1.: Summary of RECIST 1.1 Response Categories and Combinations

2Nadir is the lowest point reached by a variable, in this case the SLD of target lesions, during treatment.
It is used as a reference point for determining progression.
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It is worth emphasizing certain critical aspects of the RECIST Overall Response calcu-

lation that have particular relevance for the reliability analyses presented in this thesis.

The presence of new lesions or unequivocal progression in non-target lesions serves as

an absolute indicator of disease progression, regardless of favorable changes observed in

target lesions. This means that even if target lesions demonstrate CR, PR, or SD, the

detection of new lesions or significant worsening of non-target lesions will override these

positive findings, resulting in an overall classification of PD. This hierarchical decision

structure reflects the biological understanding that cancer spread to new sites fundamen-

tally represents treatment failure, regardless of responses in previously identified disease

locations.

An important aspect of RECIST evaluations to keep in mind is that the Overall Response

can take any of the values CR, PR, or SD up until the point at which a patient is classified

as PD at which point they would generally be removed from study participation. This is

of practical importance for endpoints that include positive responses such as ORR, time to

response (TTR), and duration of response (DoR) as these endpoints are calculated using

only patients who achieved CR or PR at any point during treatment. Moreover, because

nadir can be a shifting point, the SLD used to determine progression can change over

the course of treatment, meaning that a patient who was previously classified as PR or

SD could later be reclassified as PD if their SLD increases by 20% from the lowest point

recorded since treatment initiation. This dynamic nature of RECIST assessments means

that RECIST ratings are only quasi-ordinal in nature, as the numeric basis for the ratings

can change over time. Figure 1.1 below illustrates four possible patterns of RECIST 1.1

Target Lesion assessments over time, demonstrating how classification is a moving target

for individuals that change based on the SLD of target lesions.

Each row of the four rows in this figure can be thought of as the trajectory of a patient’s

SLD over the course of a baseline visit and 5 follow-up visits, with the y-axis normalized

to 100% of the baseline SLD. Greyed out regions indicate timepoints not yet observed

i.e. the rows should be read left to right. The red horizontal lines indicate the thresholds

for progression (20% increase from nadir), while the green horizontal lines indicate the

thresholds for response (30% decrease from baseline). In the first row, the patient neither

achieves a response nor experiences progression, remaining classified as SD throughout the

treatment course. In the second row, the patient’s SLD decreases slightly, lowering the

nadir value and thus the threshold for progression in the process. However, their disease

course begins to worsen, and they are ultimately classified as PD at the final visit as they
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have crossed the red line indicating a 20% increase in SLD from the nadir. The third

row illustrates a patient who achieves a PR at their third follow-up visit as they cross

under the green line, and who simply continues to show response over the following visits.

The fourth row shows a patient who achieves a PR at their second follow-up visit, but

whose disease worsens over time, ultimately being classified as PD at the final visit. This

illustrates how RECIST classifications can change over time based on the SLD of target

lesions and the appearance of new lesions.
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Figure 1.1.: Example of RECIST 1.1 Response Assessments Over Time
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While the overview provided here covers the core elements of RECIST 1.1, it necessar-

ily omits some nuances addressed in the complete guidelines such as specific criteria for

lymph nodes, handling of non-measurable lesions, and special considerations for certain

imaging modalities. Additional technical specifications in the original publication (1) in-

clude detailed criteria for lymph node assessment, guidance for handling non-measurable

or non-evaluable lesions, and special considerations for particular imaging modalities. Nev-

ertheless, the framework described above establishes the essential foundation required for

understanding RECIST’s application in clinical trials and, more specifically, for interpret-

ing the reliability analyses that form the central focus of this thesis.

1.3. Towards Treatment: Clinical Trials

With some background on cancer and knowledge of the RECIST criteria in mind, we can

now turn to the specific context of clinical trials and the role of tumor response assessment

in evaluating cancer treatments. This section provides an overview of the importance of

clinical trials, how success is measured in those trials, and the regulatory requirements for

and difficulties in tumor response assessment.

1.3.1. Clinical Trials as the Gateway to Therapies

Clinical trials serve as the critical gateway through which new cancer treatments must pass

before reaching patients. These systematic studies provide the controlled environment

necessary to evaluate safety, efficacy, and optimal dosing of novel therapies (22). Regula-

tory bodies including the U.S. Food and Drug Administration (FDA) and the European

Medicines Agency (EMA) have established rigorous frameworks governing the conduct of

these trials, emphasizing not only scientific validity but also ethical considerations and

patient safety (22,28). These regulatory requirements underscore the fundamental role of

clinical trials as the sole legitimate pathway for new cancer therapies to gain approval and

enter standard clinical practice.

The development of cancer treatments represents a substantial investment of time, exper-

tise, and financial resources. A new therapeutic agent typically undergoes many years of

laboratory research, preclinical testing, and multiple phases of clinical trials before receiv-

ing regulatory approval (29). This extensive development timeline makes the accuracy and
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reliability of trial endpoints particularly crucial; inefficiencies or errors in measuring treat-

ment effects can significantly delay or even derail the development of potentially beneficial

therapies. Phase II and Phase III trials are especially critical in this process, as they pro-

vide the primary evidence for efficacy and safety that supports regulatory decision-making

(30). These later-phase trials rely heavily on standardized assessment criteria like RECIST

to reliably measure treatment responses consistently across diverse clinical settings.

Given that regulatory approval hinges on demonstrating meaningful clinical benefit, mea-

surement tools must be both precise and reliable to distinguish genuine therapeutic effects

from artifacts or natural disease variation (21,31). Standardized frameworks like RECIST

provide this essential foundation by enabling consistent assessment across different inves-

tigators, trial sites, and patient populations while facilitating regulatory review through a

common evaluation language.

1.3.2. Measuring Treatment Success & Surrogate Endpoints

The primary objective of any cancer treatment is to improve patient outcomes, with over-

all survival (i.e. the length of time a patient lives after starting treatment) representing

the most definitive measure of therapeutic benefit (32,33). Despite its unequivocal clini-

cal relevance, overall survival presents significant methodological challenges as a primary

endpoint in clinical trials. Studies using overall survival as their primary endpoint often

require extended follow-up periods as they necessarily aim to capture the long-term effects

of treatment, which substantially increases trial duration, cost, and complexity (32). Such

extended timelines are frequently incompatible with the urgent need to bring effective

therapies to patients and the economic realities of drug development (32). Furthermore,

the impact of subsequent treatments after disease progression can confound the interpre-

tation of overall survival data, potentially obscuring the true effect of the investigational

therapy.

Given these limitations, surrogate endpoints have become essential tools in oncology re-

search, providing earlier signals of efficacy that can accelerate therapeutic development

and regulatory decision-making (34). These surrogate measures serve as proxies for clin-

ical benefit that can be assessed more rapidly than overall survival. Common surrogate

endpoints include outcomes reliant on measurements like tumor response and patient-

reported quality-of-life (34,35). Importantly, several RECIST-based metrics have emerged

as particularly valuable surrogate endpoints in oncology trials. Progression-Free Survival
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(PFS) measures the time patients live without disease worsening; Objective Response Rate

(ORR) quantifies the proportion of patients achieving complete or partial tumor shrinkage;

Disease Control Rate (DCR) captures those with complete response, partial response, or

stable disease; Time to Progression (TTP) documents the interval from treatment initia-

tion to disease advancement; and Duration of Response (DoR) records how long responses

are maintained before progression or death (34). These endpoints are often employed as

primary or secondary endpoints in solid tumor clinical trials depending on what patient

outcomes the trial hopes to optimize (33).

While surrogate endpoints facilitate more efficient drug development, their use requires

careful interpretation (33). The correlation between surrogate endpoints and meaningful

clinical outcomes like overall survival varies across cancer types, treatment modalities, and

patient populations (33). A treatment may demonstrate impressive tumor shrinkage yet

fail to extend survival or improve quality of life. Such a disconnect underscores the need

for cautious assessment of surrogate measures. Nevertheless, regulatory agencies including

the FDA and EMA generally accept well-validated surrogate endpoints as components of

the evidence package supporting approval, particularly in Phase II and Phase III trials.

These later-stage trials, involving hundreds to thousands of participants, rely heavily on

standardized assessment frameworks to ensure consistent measurement and interpretation

of key endpoints.

Tumor response as measured by RECIST has been validated as a key indicator of treat-

ment efficacy and predictor of survival in clinical practice. This validation provides the

foundation for RECIST’s central role in defining and measuring the surrogate endpoints

described above. However, the reliability of these RECIST-derived endpoints depends

critically on accurate and consistent tumor assessment. Measurement challenges such

as technical issues with imaging, observer-related variability, and patient-related factors

can compromise endpoint validity. Inaccurate response assessment can lead to misclassi-

fication of treatment efficacy, inappropriate treatment decisions, and ultimately impact

patient outcomes. Given that regulatory approval and clinical adoption of new therapies

often hinge on these surrogate measures, ensuring their reliability through standardized

assessment criteria becomes a matter of paramount importance.
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1.3.3. RECIST as the Regulatory Standard

Regulatory authorities worldwide have embraced RECIST 1.1 as a preferred methodol-

ogy for tumor response assessment in clinical trials. Both the FDA and EMA explicitly

recognize RECIST in their guidance documents, with the FDA publishing non-binding

recommendations that specifically reference RECIST as an established approach for eval-

uating tumor response in solid tumors (36,37). While these agencies do not mandate

RECIST’s use, they strongly encourage standardized and validated methodologies that

ensure consistency across trial sites and facilitate regulatory review (36). RECIST has

become the de facto standard precisely because it provides a framework that satisfies

regulatory expectations for objective, reproducible, and clinically meaningful endpoints

(38).

The widespread regulatory acceptance of RECIST stems from multiple factors. First,

standardized criteria like RECIST enable efficient regulatory review by providing a com-

mon framework for comparing results across different studies and therapeutic agents

(38,39). Second, RECIST facilitates international harmonization, ensuring consistency

across multinational trials and regulatory submissions to different authorities (1). Finally,

regulatory agencies expect robust quality assurance in clinical trials, and the FDA helped

mold RECIST as it was consulted during development (1).

While RECIST enjoys broad regulatory support and validation, important questions per-

sist regarding its systematic validity in certain contexts. The framework’s reliance on

unidimensional measurements may not fully capture complex response patterns (e.g. volu-

metric changes), particularly with novel therapies that may induce changes in tumor den-

sity or vascularity without necessarily affecting the tumor size. Furthermore, the arbitrary

nature of the threshold values used to define response categories, namely the 30% reduc-

tion for partial response and 20% increase for progressive disease, lacks explicit biological

rationale (31). These inherent limitations underscore the need for ongoing critical eval-

uation of RECIST’s performance across different treatment modalities and cancer types,

even as it remains the regulatory standard for response assessment in oncology trials.

1.3.4. Operational Challenges of RECIST in Clinical Trials

Despite RECIST’s standardized framework, significant challenges persist in its practical

implementation across clinical trials (39). Even when adhering to RECIST guidelines,
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rater variability remains a substantial concern, with multiple factors contributing to in-

consistent assessments (40). These challenges can be broadly categorized into technical,

observer-related, and lesion-specific factors. Technical factors include variations in imaging

protocols, slice thickness, and contrast timing, which can significantly affect how tumors

appear and are measured (1). Observer-related factors encompass differences in experi-

ence level, training background, and specialty expertise among evaluators (40,41). Le-

sion characteristics such as size, location, morphology, and enhancement patterns further

complicate consistent assessment. Additionally, measurement methodology differences in-

cluding the use of manual versus automated tools and variations in software systems can

introduce another layer of potential inconsistency in tumor response evaluation (42). A

particularly significant source of variability lies in the selection of target lesions at baseline

(43,44). Since RECIST allows for the designation of up to five target lesions from poten-

tially numerous eligible lesions, different evaluators may select different subsets of tumors

for measurement. This initial divergence cascades throughout the assessment process, as

subsequent measurements and response classifications are directly tied to these baseline

selections. These challenges highlight the need for standardized imaging protocols, consis-

tent training programs for investigators, and ongoing quality control processes to ensure

assessment reliability.

In the context of clinical trials, a critical distinction exists between assessments performed

by site investigators (also called “local” or “enrolling” investigators) and those conducted

through blinded independent central review (BICR) (45). Site investigators are typically

the clinicians directly involved in patient care and treatment decisions, while BICR involves

independent radiologists or oncologists who review imaging data without knowledge of

treatment allocation. (Of note, a single study may have many site investigators, each

of whom may assess the same patient independently; we will generally refer to them in

the singular form “site investigator” in our Methods and Results section for simplicity.)

This separation is intended to minimize bias and ensure objective evaluation of treatment

response (39).

Beaumont et al. (46) examined this distinction in a Phase II study, finding notable dif-

ferences in the determination of progressive disease between site investigators and central

reviewers. These differences were not merely random variations but reflected systematic

disparities in how the two groups applied RECIST criteria. Ford et al. had previously

observed that BICR workflow processes are “specifically intended to produce greater con-

sistency in image interpretation” compared to site investigator assessments, typically em-
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ploying two independent BICR raters with an adjudicator to resolve discrepancies which

may produce better results than site investigators (45). Ford’s comprehensive analysis

identified multiple sources of variability between site and central assessments, including

differences in training protocols, potential treatment bias among site investigators who

may have clinical knowledge of patients, varying experience with different tumor types,

and disparate interpretations of RECIST guidelines (see Table 1 from Ford for a detailed

overview of these variability sources) (45).

While BICR is generally considered the gold standard for response assessment due to its

structured approach and reduced potential for bias, it is not always feasible due to sub-

stantial cost and time constraints (47). Consequently, some trials rely exclusively or partly

on site investigator assessments, which might introduce variability and bias into response

evaluations (48). This disparity is particularly pronounced in target lesion selection, where

systematic differences may emerge between specialized radiologists (i.e. central reviewers)

and clinicians with less imaging experience (i.e. site investigators) (45). Furthermore, site

investigators may be influenced by treatment knowledge in open-label studies, potentially

affecting their assessments in ways that blinded central reviewers would not experience

(48).

The extent of such differences between site and central reviewers has been empirically

investigated in several key studies. Zhang et al. (48) conducted a meta-analysis of 76 phase

III randomized clinical trials (RCTs) of anticancer agents for solid tumors that included

assessments from both site investigators and central reviewers. While their analyses found

no systematic differences between site and central reviewers across the four trial endpoints

(ORR, DRR, PFS, and TTP) they examined, they observed that statistically inconsistent

inferences could be made in nearly a quarter of the trials depending on which assessment

source was used. This suggests that although differences may not be systematic across the

entire landscape of oncology trials, they can nevertheless have significant implications for

specific studies and endpoints. Corroborating these findings, Jacobs et al. (49) examined

24 phase II and III RCTs of anticancer agents for solid tumors specifically in breast cancer.

Their investigation reached essentially the same conclusion as Zhang et al., though with the

notable limitation that Jacobs’ work focused exclusively on PFS as the endpoint of interest,

leaving questions about other important RECIST-derived endpoints unaddressed.
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1.4. Research Gaps Restated and Aims of the Thesis

The preceding sections have established that while RECIST 1.1 provides a standardized

framework vital for tumor response assessment in clinical trials, significant reliability chal-

lenges persist in its implementation. Despite this widespread regulatory acceptance and

empirical reliability analyses done by the likes of Zhang et al. and Jacobs et al., some

questions persist about the consistency of RECIST interpretations across different raters,

particularly between site investigators and central reviewers (48,49).

Several specific knowledge gaps regarding RECIST reliability can thus be seen in the liter-

ature covered in this introduction. First, despite numerous individual studies examining

inter-rater reliability in RECIST assessments, no comprehensive meta-analysis has synthe-

sized these findings to establish baseline expectations for agreement levels across raters in

any context. Second, while some studies have noted differences between site investigator

and central reviewer assessments, systematic analyses of how these differences affect vari-

ous trial endpoints remain limited in terms of the endpoints they have analyzed including

the absence of TTR and DoR. Third, the impact of RECIST’s arbitrary threshold values,

namely the 30% reduction defining partial response and 20% increase indicating progres-

sion, on inter-rater reliability has not been comprehensively evaluated. These thresholds,

though widely accepted, lack explicit biological rationale and may contribute to assessment

variability when measurements fall near these cutoff points.

Addressing these knowledge gaps has significant clinical relevance for oncology trials. Im-

proved understanding of RECIST reliability can enhance the accuracy of tumor response

assessment, potentially reducing measurement error and increasing confidence in trial out-

comes. Additionally, quantifying the extent and patterns of disagreement between site

investigators and central reviewers could inform more efficient trial designs and monitor-

ing practices. Finally, evaluating the impact of threshold values on response classification

may guide future refinements to RECIST criteria, particularly as novel treatment modal-

ities with atypical response patterns become more prevalent in oncology.

This thesis therefore aims to systematically address these gaps through three primary

research objectives. First, we will conduct a comprehensive meta-analysis of existing inter-

rater reliability studies using RECIST criteria to establish baseline agreement expectations.

Second, we will analyze several trial endpoints to compare site investigator assessments

with central review outcomes, examining whether systematic differences exist in response

classification. As a corollary to these analyses, one would expect that site investigators
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and central reviewers will not differ at all in an ideal scenario, and we thus also conduct

equivalence testing to formally assess this hypothesis on the same endpoints. Finally,

we will evaluate how varying the threshold values in RECIST criteria affects inter-rater

reliability and classification stability, potentially identifying cutpoints that maximize (dis-

)agreement between raters.

With this background established, we proceed to the Methods chapter, which outlines the

research design and methodology employed to address these questions.
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2. Methods and Materials

This section is broadly divided into two parts: the first part describes the data sources

and how the data for this study are sourced, while the second part details the statistical

analyses performed on the data. The methods and materials described here are designed

to ensure transparency, reproducibility, and rigor in the research process, adhering to best

practices in meta-analyses, and in scientific reporting more broadly.

2.1. Data Sources

Data for this study are sourced from two primary domains: a systematic review of the liter-

ature and proprietary data extracted from clinical trials. The literature review focuses on

peer-reviewed studies reporting inter-rater reliability metrics for RECIST 1.1 assessments,

while the clinical trial data are obtained from three specific trials that utilize RECIST

1.1 criteria for evaluating treatment responses made available through TransCelerate Bio-

Pharma Inc.’s DataCelerate™ platform (50,51). The trials are selected based on their

use of RECIST 1.1 criteria, the availability of assessments from both site investigators

and central reviewers, and the inclusion of data on target lesions, non-target lesions, new

lesions, and SLD measurements. Details for both data sources are provided below.

2.1.1. Literature Search

A systematic search of the literature is undertaken to identify peer-reviewed studies that

report inter-rater reliability metrics for assessments conducted using RECIST 1.1. The

search is designed to comprehensively capture studies that quantitatively evaluate the

degree of agreement between multiple independent raters, employing established statistical

measures of inter-rater reliability.
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2.1.1.1. Search Strategy & Study Eligibility

The primary search was conducted in the PubMed/MEDLINE database using a combina-

tion of Medical Subject Headings (MeSH) and free-text terms (52). The search strategy

encompasses two core conceptual domains: employment of RECIST criteria in the study

and inter-rater reliability. Searches were conducted with Essie syntax to optimize sen-

sitivity to identifying relevant studies (53). The search terms included combinations of

expressions including “RECIST inter-rater reliability”, “(RECIST OR Response Evalua-

tion Criteria in Solid Tumors)”, and “(Cohen’s kappa OR Fleiss’ kappa OR kappa)”

In addition to the primary search, targeted supplementary searches were carried out to

further enhance the comprehensiveness of the review and capture potentially relevant

studies not indexed in PubMed. A supplementary search of Google Scholar was performed

using the keywords “RECIST interrater reliability”, and the first 50 results retrieved were

screened for eligibility, with attention to studies published in non-MEDLINE indexed

journals.

Eligibility criteria were defined a priori to ensure the systematic and unbiased inclusion

of relevant studies. To be included, studies must be published in peer-reviewed journals,

report quantitative inter-rater reliability statistics for RECIST 1.1 assessments (either

Cohen’s 𝜅 or Fleiss’ 𝜅), and involve two or more independent qualified raters (i.e. med-

ical doctors) evaluating identical imaging datasets. Only studies that provide sufficient

methodological detail to enable data extraction and critical appraisal were considered.

Furthermore, only articles published in English and after the introduction of RECIST 1.1

in 2009 are eligible (1).

Studies were excluded if they employ the outdated RECIST 1.0 criteria, if they employ

variants of RECIST such as mRECIST (54) and iRECIST (55), if they report only descrip-

tive rather than statistical measures of agreement, and if they only provide continuous

measures of inter-rater reliability such as intra-class correlation coefficients. In addition,

studies lacking sufficient detail regarding statistical methodology or reliability calculation

procedures, studies not reporting inter-rater reliability metrics, and duplicated studies are

all excluded.
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2.1.1.2. Study Screening and Selection Process

To ensure transparency and reproducibility in the identification, screening, and selection

of studies, we follow the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) 2020 guidelines (56). The study selection process is documented

using a PRISMA flow diagram, which details the number of records identified, screened,

assessed for eligibility, and included in the final analysis, as well as the reasons for exclusion

at each stage. This approach provides a standardized and rigorous framework for reporting

systematic reviews and meta-analyses.

All searches were conducted between April 1 and April 2, 2025. The study selection process

was carried out in two stages to minimize bias and ensure comprehensive identification

of eligible studies. In the first stage, titles and abstracts of all retrieved records were

independently screened by PC to determine potential eligibility. Records that clearly

meet inclusion criteria (i.e. because 𝜅 is reported in the article abstract) or whose eligibility

cannot be determined based on the abstract alone were retained for full-text evaluation.

In the second stage, the full texts of potentially eligible studies were assessed in detail

against the predefined inclusion and exclusion criteria. Studies that meet all inclusion

criteria were incorporated into the final dataset. In addition to database searching, the

reference lists of all included studies were manually reviewed to identify any additional

relevant articles not captured by the primary or supplementary search strategies. The

entire study selection process was documented and reported in Figure 2.1 in accordance

with the PRISMA guidelines to ensure transparency and reproducibility. The diagram

was produced using the {PRISMA}1 R Package (57).

2.1.1.3. Data Extraction

For data extraction, we used a standardized form developed specifically for the purposes

of this review. Extracted study characteristics include bibliographic information (author,

year, and database), number of raters, the type of inter-rater reliability statistic reported

(Cohen’s 𝜅 or Fleiss’ 𝜅), the estimate for the reported statistic, and the corresponding stan-

dard error or confidence interval. The context in which the study is conducted (e.g. clinical

trial, retrospective study, etc.) was also collected, and summarized as either being a Clini-

cal Trial or Other Study as the only major distinction of relevance for this paper is whether
1It is customary in the R ecosystem to denote the name of a package by enclosing it in curly braces

e.g. {packageName}. We will follow this convention throughout the thesis.

39



RECIST 1.1 Analysis CHAPTER 2. METHODS AND MATERIALS

Figure 2.1.: PRISMA flow diagram of study selection for inclusion in the meta-analysis.

or not the study data is derived from a clinical trial. The term “Other Study” is chosen

to describe the remaining studies as they are done in a mix of prospective (40,58,59) and

retrospective (41,44,60–64) designs across 1 to 3 sites, but such study design elements are

not otherwise of significance to this review.

When studies fail to directly report sufficient details of their inter-rater reliability statistics,

namely the standard error of the estimate, these values are derived from the reported

95% confidence intervals using standard statistical formulas. Studies that neither report

confidence intervals nor standard errors are necessarily excluded from the meta-analyses.

2.1.2. Trial Data

Potential clinical trials were identified by querying the ClinicalTrials.gov API v2.0.3 “stud-

ies” endpoint (65), specifically targeting the query.outc field, which allows searching for

both primary and secondary outcome measures. This field was queried using Essie syntax

(66) for the string: “RECIST OR response evaluation criteria in solid tumors OR sum

of longest diameters OR SLD”, to identify studies that directly or indirectly referenced

RECIST criteria in their primary or secondary outcomes. We did not restrict the search

criteria to strictly “RECIST” or “response evaluation criteria in solid tumors” because it

was noted in preliminary searches that some studies only referenced the terms “sum of

longest diameters” and “SLD” while implicitly using the RECIST rating criteria.

Studies identified via querying the ClinicalTrials.gov API were then cross-referenced with
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those available through TransCelerate BioPharma Inc.’s DataCelerate™ platform. Tran-

sCelerate is a non-profit organization promoting collaboration across biopharmaceutical

companies, with approximately 20 major pharmaceutical partner companies (67). The

DataCelerate™ platform in particular aims to facilitate the sharing of high-quality histor-

ical trial data (HTD) across companies in a manner compliant with U.S. Code of Federal

Regulations privacy laws as well as adhering to other globally relevant data privacy laws

(51); in other terms, it provides a secure, standardized environment ensuring regulatory

compliance and protects patient confidentiality while enabling collaborative research and

secondary analyses across the pharmaceutical industry. Of note, the data available for

this project via DataCelerate™ is exclusively placebo group/standard of care (PSOC)

data, also commonly referred to as “control group” data (51).

The subset of studies identified by cross-referencing results from ClinicalTrials.gov against

DataCelerate™ undergo manual review to confirm the use of RECIST 1.1 criteria, the

availability of RECIST assessments from both site investigators and central reviewers,

and the inclusion of data on target lesions, non-target lesions, new lesions, and SLD

measurements. Three trials meet all inclusion criteria: NCT02395172, NCT03434379,

and NCT03631706. Two of these trials investigate treatments for non-small cell lung

cancer, while the third focuses on hepatocellular carcinoma. Detailed trial characteristics

are summarized in Table 2.1.
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Trial ID NCT02395172 NCT03434379 NCT03631706

Cancer Non-Small Cell Lung Cancer Hepatocellular Carcinoma Non-Small Cell Lung Cancer

Label Open Open Open

Phase Phase 3 Phase 3 Phase 3

Control Group Size n=329 n=128 n=146

Control Group

Treatment

Docetaxel (cytotoxic) Sorafenib (targeted cytostatic) Pembrolizumab

(immunotherapy)

Population Notes NSLCC patients what have progressed

disease

Advanced or metastatic HCC

patients

NSLCC patients

Locations 260 international sites 119 international sites 119 international sites

Table 2.1.: Characteristics of Included Clinical Trials

The therapeutic agents in these trials represent three distinct mechanisms of action: cytotoxic treatments that induce cell death primarily through

chemotherapy (68), cytostatic agents that inhibit cell division (68), and immunotherapies that activate targeted immune responses (69). This

distinction is methodologically significant as these different modalities produce distinct response patterns that may affect RECIST assessment

validity. For example, immunotherapies can cause pseudoprogression due to immune cell infiltration before actual tumor response occurs, potentially

leading to misclassification under standard RECIST criteria (21).
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For each clinical trial, data are structured in accordance with the Study Data Tabula-

tion Model (SDTM) as defined by the Clinical Data Interchange Standards Consortium

(CDISC) (70). The data standards developed by CDISC ensure consistency and regulatory

compliance in the submission of clinical trial data, and also helps facilitate interoperabil-

ity and data analyses within and across institutions analyzing trial data. Specifically, the

tumor (TU), tumor results (TR), and disease response (RS) domains are employed to

capture and organize data related to tumor assessments and treatment responses.

The TU domain is used to uniquely identify tumors and lesions, specifically their classifi-

cation as target, non-target, or new lesions, as per RECIST 1.1 guidelines (71). The TR

domain records quantitative and qualitative measurements of these identified tumors, such

as size and progression status, which are essential for calculating the SLD and assessing

changes over time (71). The RS domain captures the overall response evaluations (e.g.,

complete response, partial response, stable disease, or progressive disease) based on the

RECIST criteria (72), and is largely derived from the TU and TR domains. These do-

mains work in concert to provide a comprehensive and traceable representation of tumor

burden through monitoring of individual tumors and the SLD of those tumors, as well as

treatment efficacy by way of deriving outcomes according to the RECIST criteria (73).

Data extracted and/or derived from the TU, TR, and RS SDTM domains include SLD

measurements and RECIST 1.1 assessments for overall response, target lesions, non-target

lesions, and new lesions. These data are available at scheduled imaging time points as de-

fined by each study protocol. At each of these time points, imaging assessments are

independently performed by three raters: one on-site investigator and two central review-

ers.
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2.2. Statistical Analyses

The statistical analyses are divided into three major sections reflecting the three main

lines of enquiry of this thesis. First, the procedures for the IRR meta-analyses are covered

including a review of Cohen’s and Fleiss’ 𝜅, the mathematical bases for transforming the

IRR data, and details of how the meta-analyses are conducted and interpreted. Second, we

present a multi-part analysis of differences between site investigators and central reviewers

for the trial endpoints ORR, TTP, TTR, and DoR. Finally, this chapter concludes by

describing the sensitivity analysis which aims to elucidate whether differences between

site investigators and central reviewers in trial outcome measures has a dependency on

the disease progression and response thresholds defined by RECIST. A helpful framing

question to keep in mind while reading the methods and results for the sensitivity analyses

is as follows: “if we change the response and progression thresholds, how much more or

less do the site investigators and central reviewers agree with one another?”

2.2.1. Inter-Rater Reliability Meta-Analysis

A meta-analysis is a statistical technique that combines the results of multiple independent

studies to produce a single summary estimate of an effect or association (74). By synthe-

sizing data across studies, meta-analyses increase statistical power, improve estimates of

effect size, and help identify patterns or sources of heterogeneity that may not be apparent

in individual studies (74). This approach is especially valuable in fields where individual

studies may be small or yield conflicting results, as it provides a more comprehensive and

objective assessment of the evidence. Meta-analyses typically employ either fixed-effect

or random-effects models, with the former assuming that all studies estimate the same

underlying effect size, while the latter allows for variability between studies in terms of

populations, methodologies, and other factors (74). The choice of model depends on the

research question, the degree of heterogeneity among studies, and the assumptions about

the data.

As such we conducted a series of random-effects meta-analyses focusing on inter-rater

reliability (IRR) statistics in order to evaluate the consistency of RECIST 1.1 assessments

across different raters of the same data. Specifically, we analyzed Cohen’s 𝜅, Fleiss’ 𝜅, and

a combined set of both measures, with all analyses restricted to the Overall RECIST 1.1
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Outcome, which was generally the only available endpoint across the studies identified in

the literature search.

2.2.1.1. IRR Measures Review: Cohen’s and Fleiss’ 𝜅

Cohen’s kappa (𝜅) is a statistical measure assessing the degree of agreement between two

raters/observers who each classify the same items. Unlike a simple percentage agreement

measure, Cohen’s 𝜅 accounts for agreement between raters that occurs by chance alone

which provides a more robust measurement of rater agreement (75). The calculation of

Cohen’s 𝜅 is given by (75):

𝜅 = 𝑝𝑜 − 𝑝𝑒
1 − 𝑝𝑒

(2.1)

where

𝑝𝑜 =
𝑘

∑
𝑖=1

𝑝𝑖𝑖 (2.2)

is the observed proportion of agreement and 𝑝𝑖𝑖 denotes the proportion of items for which

both raters independently assigned category 𝑖, and 𝑘 is the total number of categories.

Likewise,

𝑝𝑒 =
𝑘

∑
𝑖=1

𝑝𝑖𝐴 ⋅ 𝑝𝑖𝐵 (2.3)

is the expected proportion of agreement by chance, with 𝑝𝑖𝐴 is the proportion of items

that rater A assigns to category 𝑖, 𝑝𝑖𝐵 is the proportion of items that rater B assigns to

category 𝑖, and 𝑘 is the number of categories.

Interpretation of the corresponding values is relatively straightforward as 𝜅 is mathemati-

cally bounded on the interval [−1, 1] with positive values indicating rater agreement and

negative values indicating disagreement (76). However, observed values are typically as-

sumed to be on the range (0, 1] as this is the range in which raters show partial agreement

up until perfect agreement at 𝜅 = 1 (76). Approximate qualitative interpretations of

values on this range have been proposed by Landis et al. (77), and are reproduced in

Table 2.2 below.
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Kappa Interpretation

<0.00 Poor agreement

0.00-0.20 Slight agreement

0.21-0.40 Fair agreement

0.41-0.60 Moderate agreement

0.61-0.80 Substantial agreement

0.81-1.00 Almost perfect agreement

Table 2.2.: Interpretation of Cohen’s Kappa Values according to Landis et al. (1977)

While Table 2.2 provides a useful framework for interpreting Cohen’s 𝜅 values, it is impor-

tant to note that these benchmarks are arbitrary and may not apply universally across all

contexts. The interpretation of 𝜅 values can vary depending on the specific application,

the nature of the data, and the clinical or research context in which the ratings are made.

Therefore, while these benchmarks provide a general guideline and serve as the starting

point for discussions around the IRR in this paper, they must be applied with caution and

in conjunction with other contextual factors.

As with other statistical measures, the interpretation of Cohen’s 𝜅 should likewise be

informed by the variability of the data (i.e. confidence intervals and standard errors) and

the specific clinical or research context in which it is applied. In some cases, reviewing the

marginal distributions of the data may provide additional insights into the nature of the

source of (dis-)agreement between raters.

An important limitation of Cohen’s 𝜅 is its sensitivity to the strictness of category defini-

tions, particularly when categories are conceptually similar or adjacent in clinical mean-

ing. In the context of RECIST 1.1, for example, a complete response (CR) and a partial

response (PR) are treated as distinct categories, even though both represent favorable

treatment outcomes, as will be explored in our analyses of objective response rate. Be-

cause 𝜅 penalizes all disagreements equally, however, it does not account for the practical

or clinical proximity of such categories. As a result, disagreements between raters that

involve adjacent or similar categories can disproportionately lower the 𝜅 value, even if the

distinction is of limited clinical impact. This limitation should be considered when inter-

preting 𝜅 values in settings where the boundaries between categories may be somewhat

arbitrary or where minor disagreements do not necessarily reflect meaningful differences

in clinical judgment.
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In addition to advocating for caution in interpreting Cohen’s 𝜅 values, it is also important

to note that the statistic is only applicable for assessing agreement between two raters.

When more than two raters are involved, Fleiss’ 𝜅 is typically employed as an extension of

Cohen’s 𝜅 that allows for the assessment of agreement among multiple raters simultane-

ously (78). Fleiss’ 𝜅 is calculated using a similar formula to Cohen’s 𝜅 that calculates an

average agreement between raters while adjusting for expected agreement, and the yielded

values are also on the range, [−1, 1] (78).

2.2.1.2. Compiling Inter-Rater Reliability Estimates

Estimates of Cohen’s and Fleiss’ 𝜅 statistics and their corresponding standard errors were

extracted directly from the included studies when available. When standard errors were

not reported, they were derived from the reported confidence intervals using standard

statistical formulas assuming a normal distribution and a 95% confidence level. Specifically,

the standard error (SE) was calculated as:

𝑆𝐸 = 𝐶𝐼𝑢𝑝𝑝𝑒𝑟 − 𝐶𝐼𝑙𝑜𝑤𝑒𝑟
2 ⋅ 𝑍0.975

(2.4)

where 𝐶𝐼𝑢𝑝𝑝𝑒𝑟 and 𝐶𝐼𝑙𝑜𝑤𝑒𝑟 are the upper and lower bounds of the confidence interval,

respectively, and 𝑍0.975 is the critical value from the standard normal distribution corre-

sponding to a 95% confidence level (approximately 1.96).

To supplement the literature-based estimates, Fleiss’ 𝜅 was also calculated for the RECIST

Overall outcome using data from the control arm data of the three clinical trials described

previously. A standard R implementation for calculating the standard error (𝑆𝐸) of

Fleiss’ 𝜅 could not be readily located2, and recent research has shown variance calculations

for Fleiss’ 𝜅 that are derived from the variance calculates for Cohen’s 𝜅 (78) may be

inappropriate for constructing confidence intervals (79). Rather than seek out a package

implementing a potentially incorrect calculation of the 𝑆𝐸 of Fleiss’ 𝜅, 𝑆𝐸 values for

these trial-based estimates were obtained via non-parametric bootstrapping with 10,000

resamples. All IRR calculations for the clinical trial data were performed using the {irr}

package in R (80).

2The R package {rel} apparently contained a function for calculating the standard error around Fleiss’
𝜅, but the package has since been removed from CRAN.
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2.2.1.3. Logit Transformation of Kappa Values

A log transformation is frequently applied to effect size estimates in meta-analyses to (81),

particularly for measures such as odds ratios, risk ratios, and hazard ratios. The primary

rationale is that these effect sizes are inherently positive and often exhibit right-skewed

distributions. Applying the natural logarithm (ln) to these values thus serves several pur-

poses: it stabilizes the variance, normalizes the distribution, and converts multiplicative

relationships into additive ones (81), which simplifies statistical modeling and interpre-

tation. On the log scale, confidence intervals are more likely to be symmetric, and the

assumption of normality underlying many meta-analytic methods is better satisfied.

However, log transformation is not universally appropriate. It cannot be applied to effect

sizes that can take negative values or are bounded (such as correlation coefficients or 𝜅
statistics), as the transformation may yield values outside the theoretical range or intro-

duce interpretational difficulties. Additionally, back-transforming results to the original

scale can sometimes complicate interpretation, especially for non-statistical audiences. In

the case of Cohen’s and Fleiss’ 𝜅, which are both bounded on the range [−1, 1], a special

case of the log-transformation, the logit, was applied to obtain many of the same benefits

seen in a log transformation, including stabilizing variance and ensuring that confidence

intervals remained within the theoretical bounds of the statistic. The transformation was

defined as:

logit(𝜅) = log (𝜅 + 1
1 − 𝜅) (2.5)

The logit transformation is particularly well-suited for 𝜅 statistics because direct appli-

cation of a standard logarithmic transformation is not possible for values that can be

negative or zero, nor does it preserve the bounded nature of the statistic (82). The logit

function maps the interval (−1, 1) onto the entire real line, removing the bounds and

allowing for the use of statistical methods that assume unbounded, normally distributed

variables. Perhaps most importantly in the context of performing meta-analyses, this

transformation ensures that confidence intervals, when back-transformed, remain within

the theoretical limits of the 𝜅 statistic. As a result, the logit transformation enables more

accurate and interpretable meta-analytic inference for bounded agreement measures.

To estimate the standard error of the logit-transformed kappa, the delta method was used

(83). In simple terms, the delta method provides a way to estimate the standard error of
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a transformed statistic by using the standard error of the original statistic and the slope

(derivative) of the transformation (84). It works by approximating how much uncertainty

in the original value “carries over” after applying a mathematical function, such as the

logit. This allows us to calculate confidence intervals for transformed values, even when

the transformation is non-linear (84). Our approach is similar to Carpentier et al.(82) who

applied such a transformation to Cohen’s 𝜅 data, but they assumed bounding of 𝜅 from

0 to 1. We followed the same approach, but with the more general bounding of [−1, 1]
to account for the fact that 𝜅 can take negative values, and our steps were informed by

Muche et al. (84).

If ̂𝜃 is an estimator of a parameter 𝜃 and 𝑔(⋅) is a differentiable function, then:

Var(𝑔( ̂𝜃)) ≈ (𝑔′(𝜃))2 ⋅ Var( ̂𝜃) (2.6)

In our case, we are ultimately interested in the standard error of the logit-transformed 𝜅
estimate, which can be obtained by simply taking the square root of the variance:

SE[𝑔( ̂𝜃)] ≈ |𝑔′(𝜃)| ⋅ SE( ̂𝜃) (2.7)

The derivative of the logit transformation is given by:

𝑔′(𝜅) = 𝑑
𝑑𝜅 log (𝜅 + 1

1 − 𝜅)

= 𝑑
𝑑𝜅 [log(𝜅 + 1) − log(1 − 𝜅)]

= 1
𝜅 + 1 + 1

1 − 𝜅
= (1 − 𝜅) + (𝜅 + 1)

(𝜅 + 1)(1 − 𝜅)
= 2

1 − 𝜅2

(2.8)

Substituting this into the equation for the standard error of the logit-transformed 𝜅 gives

us:

SE[𝑔( ̂𝜃)] = 2
1 − 𝜅2 ⋅ SE( ̂𝜃) (2.9)
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And replacing SE( ̂𝜃) with 𝑆𝐸𝜅, the standard error of the original 𝜅 estimate, we obtain

the final formula for the standard error of the logit-transformed 𝜅:

𝑆𝐸logit(𝜅) = 2 ⋅ 𝑆𝐸𝜅
1 − 𝜅2 (2.10)

where 𝑆𝐸𝜅 is the standard error of the original 𝜅 estimate and 𝜅 is the original 𝜅 estimate.

This is the transformation applied to all 𝜅 estimates prior to conducting the meta-analyses,

and the back-transformation is applied to the pooled estimates and confidence intervals

after fitting the random-effects model.

2.2.1.4. Meta-Analysis Procedure

For each set of 𝜅 estimates (Cohen’s, Fleiss’ and the combined set), meta-analyses were

performed on the logit-transformed values to ensure that pooled estimates and confidence

intervals remained within the theoretical bounds of the statistic. The logit transformation

was applied to each study’s 𝜅 value using Equation 2.5 and its standard error using Equa-

tion 2.10, as described above. Meta-analyses were conducted using a random-effects model,

which accounts for both within-study and between-study variability. This approach is ap-

propriate given the expected heterogeneity in study populations, imaging protocols, and

assessment procedures across the included studies. The estimate of the average effect from

a random-effects analysis will be more conservative than that of a fixed-effect analysis, but

provides a more appropriate, generalizable result given the heterogeneity of the included

studies.

The random-effects model was implemented using the rma() function from the {metafor}

package in R (85), specifying the Restricted Maximum Likelihood (REML) estimator

to estimate the between-study variance (𝜏2). Each study’s contribution to the pooled

estimate was weighted by the inverse of its total variance (the sum of within-study and

between-study variance components). After fitting the model, pooled logit-transformed

estimates and their confidence intervals were back-transformed to the original 𝜅 scale using

the inverse logit function:

𝜅 = 𝑒𝑥 − 1
𝑒𝑥 + 1 (2.11)
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Heterogeneity among studies was assessed using the 𝐼2 statistic and Cochran’s 𝑄 test,

both of which are standard outputs of the {metafor} package. The 𝐼2 value quantifies

the amount of variation in estimates that is attributable to between-study differences,

with higher values indicating greater heterogeneity–that is, higher heterogeneity may be

indicative of different effects or methodological differences between studies (86). Forest

plots were generated to visually summarize individual study estimates, their confidence

intervals, and the overall pooled effect, all presented on the original 𝜅 scale.

Publication bias is assessed using both visual and statistical methods. First, we gener-

ate funnel plots for each meta-analysis, plotting the logit-transformed 𝜅 estimates from

individual studies against their corresponding standard errors. In the absence of publi-

cation bias, these plots are expected to display a symmetrical, inverted funnel shape, as

studies with larger standard errors (typically smaller studies) should scatter widely at the

bottom of the plot, while those with smaller standard errors (larger studies) cluster more

narrowly at the top (87). Asymmetry in the funnel plot may suggest the presence of pub-

lication bias, such as the selective publication of studies with larger or more significant

effect sizes, or other small-study effects (87). However, it is important to note that funnel

plot asymmetry can also arise from sources unrelated to publication bias, including true

heterogeneity between studies, methodological differences, or simple chance (86,87).

To formally test for funnel plot asymmetry, we applied Egger’s regression test using the.

Egger’s test is a statistical method that evaluates whether there is a systematic relationship

between study effect sizes and their standard errors, which would be indicative of small-

study effects or publication bias (88). Specifically, Egger’s test regresses the standardized

effect sizes (effect size divided by its standard error) on the inverse of the standard error.

A significant intercept in this regression suggests that smaller studies tend to report larger

(or smaller) effect sizes than would be expected by chance, consistent with the presence

of publication bias. The test provides a p-value for the null hypothesis that the intercept

is zero (i.e., no asymmetry). While Egger’s test increases the objectivity of publication

bias assessment, it also has limitations: it may be underpowered when the number of

studies is small (typically fewer than 10) (86), and it can be influenced by between-study

heterogeneity or outliers. Therefore, results from Egger’s test should be interpreted in

conjunction with visual inspection of the funnel plot and consideration of the broader

context of the included studies. Funnel plots and Egger’s test results are generated using

the {metafor} package in R (85).
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2.2.2. Comparing Site Investigators vs. Central Reviewers

While the preceding section examined general agreement on RECIST in a variety of clinical

trial and controlled study environments, the following section presents a comprehensive,

multi-part analysis comparing RECIST 1.1 assessments made by site investigators and

central reviewers in the three included clinical trials. Given the complexity and breadth of

the data, the analyses are organized into a series of focused components, each addressing

a distinct aspect of rater agreement and its implications for clinical trial outcomes.

First, we assess the general agreement between raters regarding the RECIST Overall out-

come. In opposition to the Fleiss’ 𝜅 values used previously as an average across all raters,

pairwise Cohen’s 𝜅 coefficients were calculated to check whether particular pairs of raters

exhibited higher or lower agreement with one another. Following this, we aimed to begin

quantifying to what degree raters disagree with each other by conducting linear mixed

effects models treating the RECIST outcome as an ordinal variable, with rater as a fixed

effect predictor and random intercepts specified for each subject to account for repeated

measures. To then explore pairwise differences between raters, we conducted post-hoc

comparisons of estimated marginal means (EMMs) between the raters. These analyses

provide a preliminary assessment of rater-specific differences in RECIST outcome assign-

ment, and help identify whether systematic biases exist in the classification of treatment

response between site investigators and central reviewers although they do not explore in

what ways the raters disagree with each other.

Second, we examine the ORR, a key binary endpoint in oncology trials, to determine

whether systematic differences exist in the classification of treatment response between site

investigators and central reviewers. This analysis provides further insight into potential

discrepancies in response categorization, and is more nuanced than the preceding analyses

as it provides a direct comparison of the proportion of patients classified as responders

(complete or partial response) by each rater group. Moreover, these analyses of ORR

begin to reveal whether differences identified in step one materially affect trial outcomes

or patient-level endpoints. To assess overall differences in ORR detection among raters, we

used Cochran’s Q test as an omnibus test for matched binary data, followed by post-hoc

pairwise McNemar’s tests with within-study Bonferroni p-value adjustments to identify

specific differences between raters within each study.

Third, we extend our investigation to time-to-event outcomes, including Time to Response

(TTR), Time to Progression (TTP), and Duration of Response (DoR). By leveraging
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survival analysis techniques, we assess not only whether raters agree on the occurrence of

key clinical events, but also whether they differ in the timing of detecting these events.

This approach allows for a more nuanced evaluation of how rater variability may influence

the interpretation of trial efficacy. Moreover, such modeling is of particular importance

given that RECIST 1.1 assessments are often used to derive these time-to-event outcomes,

and discrepancies in rater evaluations could lead to significant differences in the estimated

timing of responses or progression in the context of clinical trials and patient care.

While our analyses of ORR and TTP build upon the methodological framework established

by Zhang et al. (48), our examination of TTR and DoR represents a novel contribution to

the literature. These latter time-to-event outcomes have not been previously investigated

in the context of RECIST 1.1 inter-rater reliability, despite their clinical significance in

oncology trials. By including these additional endpoints, we provide a more comprehensive

assessment of how rater discrepancies may impact the full spectrum of clinically relevant

outcome measures derived from RECIST evaluations.

Finally, we synthesize the results of these comparisons across trials using meta-analytic

methods. This meta-analysis is designed to quantify the overall magnitude and direction

of rater differences, while accounting for between-study heterogeneity. Importantly, our

meta-analytic approach incorporates both traditional null hypothesis significance testing

(NHST) as well as formal equivalence testing (using the Two One-Sided Tests, or TOST,

procedure). This dual approach enables us to distinguish between statistically significant

differences, statistical equivalence, and inconclusive findings, providing a rigorous and

interpretable summary of rater agreement on time-to-event outcomes.

Together, these analyses offer a detailed and methodologically robust assessment of the

impact of rater discrepancies on key clinical trial endpoints, with direct implications for

the design, conduct, and interpretation of RECIST-based studies.

2.2.2.1. Preliminary Agreement Analyses Between Site and Central Reviewers

To explore potential differences in RECIST 1.1 assessments between site investigators and

central reviewers, a series of analyses were conducted using data from the three clinical

trials described previously. These analyses focused exclusively on the Overall RECIST 1.1

outcome and do not include data from the literature review.
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The first component of this analysis focuses on the general agreement between raters re-

garding the RECIST Overall outcome. Pairwise inter-rater reliability (IRR) was calculated

using Cohen’s 𝜅 coefficient for each combination of raters: site investigator vs. central re-

viewer 1, site investigator vs. central reviewer 2, and central reviewer 1 vs. central reviewer

2. This approach quantifies the degree of agreement between each pair of raters beyond

what would be expected by chance, providing a robust measure of inter-rater reliability.

All IRR analyses were conducted using R (version 4.3.2) and a mix of the {irr} package

(80) and the {psych} package (89).

IRR serves as a very general indicator of overall agreement, but, as discussed previously,

it does not provide insight into the specific nature of rater disagreements. To address

this limitation, we conducted a more detailed analysis of RECIST outcome assignment

using linear mixed effects models. These models treated the RECIST outcome as an

ordinal variable, with rater as a fixed effect and random intercepts for each subject to

account for repeated measures. Non-evaluable timepoints were removed, and the data was

ordered from worst outcome to best outcome as follows: progressive disease (PD), Non-

CR/Non-PD, stable disease (SD), partial response (PR), and complete response (CR).

Post-hoc pairwise comparisons of estimated marginal means (EMMs) between raters were

performed using the {emmeans} package, with Tukey adjustment for multiple comparisons.

This approach allows us to explore systematic differences in RECIST outcome assignment

between raters while placing soeme level of emphasis on the ordinal nature of the outcome

measures.

A linear mixed effects model is particularly well-suited for this analysis because it ac-

counts for the hierarchical structure of the data, where multiple ratings are nested within

individual subjects. By including random intercepts for each subject, the model appropri-

ately handles the correlation between repeated measurements from the same individual,

thereby avoiding inflated type I error rates that can arise from treating observations as

independent. The model is specified as follows:

Let 𝑦𝑖𝑗 denote the outcome for subject 𝑖 as rated by rater 𝑗, and let the categorical variable

rater𝑖𝑗 indicate which rater provided the assessment.

𝑦𝑖𝑗 = 𝛽0 + 𝛽1 ⋅ 𝐼(rater𝑖𝑗 = CR1) + 𝛽2 ⋅ 𝐼(rater𝑖𝑗 = CR2) + 𝑏0𝑖 + 𝜀𝑖𝑗 (2.12)

where:
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• 𝛽0 is the fixed intercept (mean outcome for ratings by the Site Investigator),

• 𝛽1 is the fixed effect for Central Reviewer 1 (difference from Site Investigator),

• 𝛽2 is the fixed effect for Central Reviewer 2 (difference from Site Investigator),

• 𝑏0𝑖 ∼ 𝒩(0, 𝜎2
𝑏) is the subject-specific random intercept,

• 𝜀𝑖𝑗 ∼ 𝒩(0, 𝜎2) is the residual error term,

• 𝐼(⋅) is an indicator function equal to 1 if the condition is true and 0 otherwise.

Post-hoc pairwise comparisons between raters are performed on the mixed model fixed-

effect estimates using the {emmeans} package, applying Tukey adjustment for multiple

comparisons within each study. This approach provides a preliminary assessment of the

presence of rater-specific differences in RECIST outcome assignment, though it should be

considered a crude estimation of differences given the quasi-ordinal nature of the outcome

means the actual value of differences may not be interpreted in a numeric, linear fashion;

more nuanced analyses of key RECIST metrics like disease progression and response are

presented in subsequent sections to address this shortcoming.

2.2.2.2. Objective Response Rate (ORR)

To assess whether the presence of discrepancies in RECIST evaluations affects the classi-

fication of treatment response, we compare the Objective Response Rate (ORR) between

site investigators and central reviewers for each trial. ORR is defined as the proportion

of patients achieving either a RECIST-rated complete or partial overall response at any

point during the trial.

To test for differences in ORR detection among raters, we use Cochran’s Q test as an om-

nibus test, which is specifically designed for matched/paired binary data (90). Cochran’s Q

test evaluates whether there are significant differences in proportions across three or more

related groups by testing the null hypothesis that all raters classify patients as responders

at the same rate (90,91). This is particularly useful for identifying overall disagreement in

binary outcomes (such as response vs. no response) when the same subjects are assessed

by multiple raters.

We further conduct post-hoc pairwise McNemar’s tests to identify specific differences be-

tween raters, applying Bonferroni adjustments for multiple comparisons within each study.

McNemar’s test is used to compare paired proportions between two related groups, focus-

ing on discordant pairs (i.e., cases where the two raters disagree) (92,93). It is especially

useful for detecting systematic differences in binary classifications between two raters,
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such as whether one rater is more likely than another to classify a patient as a responder

(92). The two-way contingency tables for these pairwise comparisons are provided in the

appendix for reference. This approach provides a robust framework for detecting both

overall and pairwise differences in response classification between rater groups.

2.2.2.3. Time to Event Analyses

While ORR captures whether a response occurred, it does not reflect the timing of that

response which is an essential consideration in evaluating treatment efficacy and informing

clinical decision-making. To address this, we extended our analysis to include several time-

to-event outcomes, allowing us to assess not only whether raters agreed on the occurrence

of an event, but also whether they differed in how quickly they identified it. The following

time-to-event outcomes were analyzed:

• Time to Progression (TTP): the time from baseline evaluation to disease progression

• Time to Response (TTR): the time from baseline evaluation to the first recorded

response

• Duration of Response (DoR): the time from initial response to subsequent progres-

sion

Survival analysis is selected for its ability to incorporate multiple raters simultaneously,

account for censoring, which is common in clinical trial data, and take advantage of the

fact that evaluation time points are aligned across raters in the trial datasets. These

features make survival models particularly well-suited for comparing the timing of key

clinical events between site investigators and central reviewers.

2.2.2.3.1. Cox Proportional Hazards Models

To compare the timing of clinical events between site investigators and central reviewers,

we employed Cox proportional hazards models, a semi-parametric approach that estimates

the hazard ratio (HR) for event occurrence between groups while adjusting for censoring

(94). This method enabled us to quantify whether one rater group systematically identified

responses or progressiocox proportional hazard modeln earlier or later than another.

Although Cox models are typically used for time-to-event data, they can also be applied to

compare the timing of discrete events such as treatment responses or disease progression.

In this context, the hazard function represents the instantaneous risk of an event occurring
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at a given time point, conditional on survival up to that time. By modeling the hazard

function separately for site investigators and central reviewers, we could directly compare

the relative timing of events between these two groups.

Three key assumptions underlying the validity of the Cox proportional hazard model are

as follows:

1. Proportional Hazards Assumption: The hazard ratios are constant over time,

meaning the relative risk of an event occurring in one group compared to another

does not change as time progresses (95,96).

2. Independence of Survival Times: The survival times of individuals are indepen-

dent, meaning that the event timing for one individual does not influence that of

another (95,97).

3. Non-informative Censoring: Censoring is non-informative, meaning that the

reasons for censoring (e.g., loss to follow-up) are unrelated to the likelihood of the

event occurring (97).

To address assumptions regarding proportional hazards, we conduct several diagnostic

checks. We first create Kaplan-Meier survival curves for all TTP, TTR, and DoR for all

three trials in order to visualize the time-to-event distributions for each rater group. These

curves are then evaluated using Schoenfeld residuals and log(-log) survival curves, which

help confirm whether the hazard ratios remain constant over time (95).

Independence of survival times was assumed based on the design of the trials, where each

patient’s event timing was independent of others. However, because we restructured the

data such that patients could be included in a data set multiple times (e.g. when multiple

raters determined the event of interest had occurred), we adjusted our analysis to account

for possible intra-cluster correlation. Specifically, we used the coxph() function from

the {survival} package in R (98), specifying the cluster argument as the subject ID,

effectively treating each study participant as a cluster. Specifying a cluster variable in

this way allows the model to account for the correlation of survival times within subjects.

This adjustment is crucial for obtaining valid standard errors and confidence intervals in

the presence of multiple raters assessing the same subjects, but will not affect the hazard

ratio estimates.
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2.2.2.4. Estimation and Comparison of Hazard Ratios

The log-rank test is a statistical test used to compare the survival distributions of two

or more groups, and is a standard method for checking for differences in time-to-event

outcomes (99,100). In our analysis, the log-rank test was initially employed as a standard

exploratory step to evaluate overall survival curve differences between site investigators

and central reviewers, and the associated p-values for determining if a difference is persent

are included in the Kaplan-Meier curves. However, while the log-rank test is a widely

used method for comparing survival curves, it has limitations in terms of interpretability.

Specifically, it does not provide estimates of the magnitude of differences in event timing,

and, by extension, it does not allow for direct comparisons of hazard rates between different

groups (99). As such, we opted to focus on post-hoc comparisons of the Cox model hazard

ratios instead.

Hazard ratios (HRs) were estimated using the coxph() function from the {survival} pack-

age in R (98). The models were specified with the time-to-event outcome as the response

variable, the rater group (site investigator, central reviewer one, central reviewer two) as

a predictor, and subject ID as a cluster variable to account for intra-cluster correlation.

The proportional hazards assumption was checked using Schoenfeld residuals and log(-log)

survival curves, as described previously. The models were fitted separately for each time-

to-event outcome (TTP, TTR, DoR) across the three trials. The Site Investigator group

was selected as the reference group in all models, and, as such, the resulting hazard ratios

(HRs) can be interpreted relative to this group; hazard ratio values greater than 1 indicate

that the central reviewer(s) identified events later than site investigators, and values less

than 1 indicate that central reviewer(s) identified events earlier.

The fitted Cox models are then passed to the emmeans() function from the {emmeans}

package in R (101) to estimate the pairwise marginal means between rater groups (i.e. the

differences in hazard ratios). This approach has the benefit of automatically employing

the logged hazard ratios which can be mathematically summed and subtracted, and later

back-transformed to the original hazard ratio scale3. The calculated differences in logged

hazard ratios thus represent differences in the average hazard of an event occurring at any

given time point between rater groups. In line with the interpretation of hazard ratios, a

3These calculations are mathematically equivalent to calculating the ratio in hazard ratios between rater
groups; we simply chose to calculate differences in logged hazard ratios to facilitate the use of the
{emmeans} package and to ensure that the resulting confidence intervals were symmetric around zero
(no difference).
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positive difference indicates that the central reviewer(s) identified events later than the site

investigators, while a negative difference indicates that the central reviewer(s) identified

events earlier.

This approach allowed for more interpretable and direct comparisons of event timing

between rater groups, providing estimates of the average hazard over time. By leveraging

the differences in hazard ratios, we were able to extract clinically meaningful contrasts

such as whether one rater group consistently identified responses or progression earlier

than the other while also maintaining an analysis structure parallel to analyses seen in

clinical trials and regulatory submissions. The estimated marginal means (EMMs) of

hazard ratios were then used to summarize the differences in event timing between site

investigators and central reviewers across the three trials in a meta-analysis.

2.2.2.5. Meta-Analysis of Rater Differences

To assess whether systematic differences in event timing between site investigators and cen-

tral reviewers were consistent across trials, we performed a random-effects meta-analysis

of the differences in estimated marginal means (EMMs) of the logged hazard ratios (HRs)

for key time-to-event outcomes. This approach enabled us to synthesize evidence from all

three trials, accounting for both within- and between-study variability, and to evaluate

the generalizability of rater-related discrepancies.

The meta-analysis was conducted on the EMM-based differences in logged HRs, which

quantify the average difference in event timing (e.g., TTP, TTR, or DoR) between rater

groups. By focusing on the logged HRs, we ensured that the effect sizes were on a scale

suitable for meta-analytic pooling and that the resulting confidence intervals could be

interpreted symmetrically around zero (no difference).

A random-effects model was chosen to reflect the expectation that the true effect size may

vary across studies due to differences in trial design, patient populations, or assessment

procedures. Each study’s effect size was weighted by the inverse of its variance, ensuring

that more precise estimates contributed more to the pooled result. Between-study hetero-

geneity was quantified using the 𝐼2 statistic and Cochran’s 𝑄 test, providing insight into

the consistency of rater differences across trials.

Forest plots were generated to visually summarize the individual and pooled estimates,

along with their 95% confidence intervals. After meta-analysis, the pooled difference in
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logged HRs and its confidence interval were exponentiated to return to the HR scale,

facilitating clinical interpretation. A pooled HR greater than 1 indicates that central

reviewers, on average, identified events later than site investigators, while a pooled HR

less than 1 suggests earlier identification by central reviewers.

This meta-analytic framework provided a robust summary of rater-related timing discrep-

ancies, contextualizing the magnitude and direction of these effects across diverse clinical

settings. By synthesizing results from multiple trials, we were able to draw more general-

izable conclusions about the impact of rater group on key clinical trial endpoints.

2.2.2.6. Equivalence Testing

Recognizing that a lack of statistical significance in traditional hypothesis testing does not

imply equivalence, we conducted formal equivalence tests to assess whether the observed

differences in hazard ratios (HRs) between site investigators and central reviewers were

small enough to be considered clinically negligible. Specifically, we applied the Two One-

Sided Tests (TOST) procedure, a widely accepted method for testing statistical equivalence

(102,103).

The TOST procedure is designed to formally test whether an observed effect falls within

a pre-specified equivalence margin—an interval of values considered so close to the null

value (e.g., 𝐻𝑅 = 1) that any difference is deemed not clinically meaningful. Lacking clear

guidance on what should constitute equivalence between raters, we defined an equivalence

margin of [0.80, 1.25] a priori, which is consistent with thresholds used in bioequivalence

studies (104), where a 20% deviation in either direction is often considered acceptable for

treatment comparisons or measurement agreement (104).

The TOST procedure involves the following steps (103):

1. Define the equivalence interval: Specify the range of effect sizes (here, 𝐻𝑅 ∈
[0.80, 1.25]) that are considered practically equivalent to no difference.

2. Conduct two one-sided hypothesis tests:

• 𝐻01 ∶ 𝐻𝑅 ≤ 0.80 (the effect is meaningfully smaller than the lower bound)

• 𝐻02 ∶ 𝐻𝑅 ≥ 1.25 (the effect is meaningfully larger than the upper bound)

3. Interpretation: If both null hypotheses are rejected at the chosen significance level

(𝛼 = 0.05), the observed HR is considered statistically equivalent to 1.0, indicating

no meaningful difference between rater groups.
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To align with the TOST framework, 90% confidence intervals for the hazard ratios were

used, as this corresponds to the 1–2� rule (i.e., 1 – 2 × 0.05 = 0.90) for equivalence

testing (103). This approach provides a more rigorous and interpretable framework for

concluding equivalence than simply failing to reject the null hypothesis in a traditional

test. It allows us to distinguish between true similarity and statistical inconclusiveness,

which is particularly important in regulatory and clinical decision-making contexts. TOST

analyses were performed using the TOSTone() function from the R package {TOSTER}

(105).

The major value of equivalence testing lies in its ability to distinguish between no evidence

of a difference and evidence of no meaningful difference. Traditional NHST can only

reject or fail to reject the null hypothesis of no effect; a non-significant result may simply

reflect insufficient power, not true equivalence (103). In contrast, the TOST procedure

allows us to make a positive statement about similarity: if the observed effect and its

confidence interval fall entirely within the equivalence bounds, we can conclude that any

difference is too small to be of concern with the important caveat that that the equivalence

bounds should be established with guidance from subject-matter experts like clinicians and

statisticians (103).

It is important to note, as highlighted in the comment above, that it is technically

possible—though uncommon—to both reject the null hypothesis of no difference (the

NHST) and establish equivalence (TOST) simultaneously. This comes across contradic-

tory at the surface-level, but it can occur in situations with very wide equivalence margins,

small sample sizes, or particular data artifacts, but more often reflects a true underlying

effect that is statistically detectable yet still within the range considered clinically unim-

portant.

By incorporating both NHST and equivalence testing, our analysis provides a more nu-

anced and rigorous assessment of rater differences, allowing us to distinguish between sta-

tistically significant differences, true equivalence, and inconclusive findings. This dual ap-

proach is particularly valuable in regulatory and clinical decision-making contexts, where

the distinction between “not different” and “equivalent” has important practical implica-

tions.
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2.2.3. Sensitivity Analyses of RECIST 1.1 Thresholds

A central concern in RECIST-based clinical trials is the potential for systematic differences

in tumor response assessments between site investigators and central reviewers. While

central review is often implemented to enhance consistency and reduce bias, it remains

unclear to what extent observed discrepancies are driven by subjective interpretation of

imaging versus the rigid application of fixed response thresholds. RECIST 1.1 defines

specific percentage changes in tumor burden to classify treatment response and disease

progression (e.g., a partial response [PR] is defined as a �30% decrease in the sum of

diameters of target lesions from baseline, while progressive disease [PD] is defined as a

�20% increase from the nadir, with an absolute increase of at least 5 mm). Although these

thresholds are widely accepted, they are ultimately arbitrary. When tumor measurements

fall near these cutoffs, even small variations in measurement or interpretation can lead to

discordant classifications between raters.

2.2.3.1. Methodological Approach

To investigate whether the fixed nature of these thresholds contributes to inter-rater dis-

crepancies, we conducted a high-resolution sensitivity analysis. This analysis systemat-

ically evaluated how varying the RECIST-defined cutoffs for PR and PD affects both

inter-rater agreement and key clinical outcome estimates.

We generated a series of modified datasets by replacing the standard 30% (PR) and 20%

(PD) thresholds with all possible combinations of values ranging from 0% to 100% inclu-

sive, in 1% increments. This resulted in 10,201 unique threshold pairs (101 × 101). For

each threshold combination, tumor response categories were reclassified for every patient

and rater based on the new cutoffs. Overall response was then recalculated using stan-

dard RECIST 1.1 logic, incorporating the modified target lesion responses along with the

original non-target lesion and new lesion data.

To quantify the impact of these threshold changes, we computed Fleiss’ 𝜅 for both target

lesion response (based solely on the modified percent change thresholds) and overall re-

sponse (based on full RECIST logic). This allowed us to assess how agreement between

raters varied across the threshold space.

In parallel, we recalculated key clinical outcomes ORR, TTR, TTP, and DoR for each rater

using the modified classifications. For ORR, we recalculated the proportion of patients
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classified as responders (CR or PR) for each rater at each threshold pair, and reperformed

Cochran’s Q tests.

For the time-to-event outcomes of TTR, TTP, and DoR, we recalculated event times

based on modified outcome classifications corresponding to different RECIST threshold

definitions. These recalculated times were used to fit Cox proportional hazards models, as

previously described, to estimate hazard ratios for each reviewer group at each threshold

pair. Following a general rule of thumb for Cox regression (106), we filtered out data sets

with fewer than (𝑘 − 1) ∗ 10 cases, where 𝑘 is the number of raters in the study. In other

terms, if fewer than 20 events of interest (TTR, TTP, or DoR) were observed across all

3 raters in a data set, then the Cox models at those thresholds were ignored. This is

done to ensure that a reasonable number of events are present in the data set to allow for

meaningful comparisons between raters (106).

To assess how these classification threshold changes influenced the relative risk associ-

ated with reviewer assessments, we conducted a difference-in-differences (DiD) analysis

comparing hazard ratios between site investigators and central reviewers.

In all models, the site investigator group served as the reference, meaning their hazard

ratio remained constant across thresholds, while the central reviewer’s hazard ratio varied

according to the applied RECIST definitions for progression and response. The DiD

was calculated as the difference in central reviewer hazard ratios between the original and

modified thresholds, effectively isolating the impact of threshold changes on estimated risk.

We defined the primary contrast of interest as the difference in hazard ratios between the

site investigator and the central reviewer at each threshold. Specifically, we calculated:

ΔRECIST = 𝐻𝑅Site − 𝐻𝑅Central (Original), ΔSensitivity = 𝐻𝑅Site − 𝐻𝑅Central (New) (2.13)

where ΔRECIST represents the difference in hazard ratios at the original RECIST criteria

(20% progression, 30% response) and ΔSensitivity represents the difference in hazard ratios at

the new combination of disease progression and response thresholds. Then, the difference-

in-differences was computed as:
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ΔRECIST − ΔSensitivity = (0 − 𝐻𝑅Central Reviewer Original) − (0 − 𝐻𝑅Central Reviewer New)

= 𝐻𝑅Central Reviewer New − 𝐻𝑅Central Reviewer Original
(2.14)

Because the site investigator’s hazard ratio remained fixed, this expression simplifies to

the change in the central reviewer’s hazard ratio across thresholds. A positive DiD value

indicates that the central reviewer’s hazard ratio increased under the new threshold. Con-

versely, a negative DiD suggests that the central reviewer’s estimated hazard decreased

under the new classification rule. It should also be noted that we refer here to a single

central reviewer because these time-to-event analyses employed the averaged hazard ra-

tios across the two central reviewers as this simplified the analysis and interpretation of

results. The averaging was done to reduce the number of heatmaps generated and because

our analyses here do not focus on differences between central reviewers as individuals, but

rather on differences between site investigators and central reviewers as a group.

2.2.3.2. Visualization of Results

In order to reduce the complexity of the results and facilitate interpretation, we generated

heatmaps that display the difference in agreement and outcome estimates between the

values found at each alternative threshold pair and those found at the actual RECIST 1.1

cut-off criteria (30% for PR and 20% for PD). The heatmaps were constructed such that

each cell represents the difference in either Fleiss’ 𝜅 or DiD of the hazard ratio between the

modified threshold pair and the standard RECIST thresholds. Positive values indicate that

the modified thresholds resulted in higher agreement or more favorable outcomes compared

to the standard RECIST definitions, while negative values indicate lower agreement or less

favorable outcomes. In the case of hazard ratios, the values of the central reviewers were

first averaged before calculating the difference from the site investigator values, allowing

for a direct comparison of the relative timing of events between site investigators and

central reviewers. This was done primarily to reduce the number of heatmaps generated,

and because our analyses do not focus on the differences between the central reviewers as

individuals, but rather on the differences between site investigators and central reviewers

as a group.

These heatmaps provide a visual summary of how sensitive inter-rater agreement and

clinical outcome estimates are to the choice of PR and PD thresholds, and help identify
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regions of the threshold space where agreement is maximized or where outcome estimates

diverge from those obtained using the standard RECIST definitions. They were generated

using the {ggplot2} package in R (107).

This sensitivity analysis provides a systematic framework for evaluating the robustness of

RECIST-based classifications and clinical outcomes to the choice of response thresholds.

By exploring a wide range of possible cutoffs and visualizing the resulting changes in agree-

ment and outcome estimates, this approach helps to clarify the extent to which observed

rater discrepancies may be attributable to the arbitrariness of the RECIST criteria, and

informs the interpretation and design of future RECIST-based studies.

65





3. Results

The results of the preceding analyses are presented in this chapter, again divided into

three major sections. The first section covers the results of the IRR analyses, including

a summary of the studies selected for inclusion and an overview of the meta-analysis

results including forest and funnel plots. The second section is a deep dive into the degree

of concordance we observe between site investigators and central reviewers both within

individual studies and averaged across studies. Regarding the latter, we specifically present

both traditional null hypothesis tests and equivalence tests of the meta-analysis results.

Finally, we close out the results with qualitative interpretations of the sensitivity analyses,

aiming to identify and summarize commonalities and differences across the three trials.

3.1. Inter-Rater Agreement is Substantial

3.1.1. Summary of Selected Studies

A total of ten studies are ultimately identified in the literature that meet the inclusion

criteria for this meta-analysis. Of these, four studies report inter-rater reliability using

Cohen’s 𝜅, while six studies use Fleiss’ 𝜅 as their primary measure. All but one of the

included studies are conducted in non-clinical trial contexts, comprising a mix of retro-

spective and prospective serial enrollment studies, most often at a single site. Across these

studies, the raters are typically radiologists or oncologists with substantial experience in

tumor measurement, ensuring a high level of expertise in the assessment process. As men-

tioned in the Methods section (Section 2.1.2), this data is further supplemented by three

clinical trials wherein we calculate Fleiss’ 𝜅 for the site investigators and central reviewers.

These trials are identified by their NCT numbers in the meta-analysis results. A complete

list of the studies included in the meta-analysis, along with their key characteristics and

inter-rater reliability measures, is provided in Table 3.1.
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This table contains columns for the Author, the type of 𝜅 measure (Cohen’s or Fleiss’)

used, the year of study publication, a general remark about the context of the study,

the number of raters, comments about the type of raters employed, and the number of

patients and scans available for each study. Although not directly included in the table,

the total number of scans is generally a multiple of ~2 or ~3 indicating that 2 or 3 scans

were evaluated per individual, with some variation due to study attrition. The table also

includes footnotes to highlight important details about the studies, such as whether the

study was conducted across multiple sites, whether lesions were selected by consensus

among raters, and whether the study explicitly examined differences in baseline tumor

selection by raters. These footnotes provide additional context for interpreting the inter-

rater reliability measures and should be considered when drawing conclusions from the

meta-analysis results.
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Author 𝜅 Measure Year Context No. Raters Type of Rater(s)

No. Pa-

tients

Total

Scans

§Aghighi et al. (60) Cohen’s 2016 Local Study 2 Radiologists 74 148

El Homsi et al. (41) Fleiss’ 2024 Local Study 7 Radiologists 159 318

Felsch et al. (61) Cohen’s 2017 Clinical

Trial

2 Site Investigators, Central

Reviewer

170 484

Ghobrial et al. (58) Cohen’s 2017 Local Study 2 Radiologist, Oncologist 28 56

Ghosn et al (62) Fleiss’ 2021 Local Study 3 Radiologists 37 74

Karmakar et al. (63) Cohen’s 2019 Local Study 2 Radiologists 61 82

Kuhl et al (40) Fleiss’ 2019 Local Study 3 Radiologists 316 932
¶Oubel et al. (44) Fleiss’ 2015 Local Study 3 Two oncologists, One

radiologist

11 33

Tovoli et al. (64) Fleiss’ 2018 Local Study 3 Radiologists 77 154
†Zimmermann et al. (59) Fleiss’ 2021 Local Study 3 Radiologists 42 84

Table 3.1.: Summary of studies included in the meta-analysis of inter-rater reliability (IRR) measures for RECIST 1.1.

§ This study was conducted across multiple sites, with scans obtained from three different locations.

¶ In this study, the selection of lesions at baseline was performed by consensus among the raters. This approach is likely to inflate both the estimated

inter-rater reliability and the precision of the results; therefore, these findings should be interpreted with caution.
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† This study explicitly examined differences that arose when raters selected different baseline tumors.
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For the studies utilizing Fleiss’ 𝜅, nearly all involved three raters, with the exception

of one study that included seven radiologists. The primary aim of this outlier study

was to investigate how the number of years of experience among raters influenced inter-

rater reliability. This focus on rater experience can add an important dimension to the

understanding of variability in tumor measurement, but was not the primary focus of this

meta-analysis and should be kept in mind when interpreting the results.

It is also important to highlight the study by Felsch et al. (61), which provided three

distinct sets of ratings: one from the site investigators and two from the central reviewers.

This study calculated Cohen’s 𝜅 for both the comparison between central reviewer 1 and

central reviewer 2, as well as for the consensus central reviewer versus the site investigator.

For the purposes of this meta-analysis, only the consensus central reviewer versus site

investigator comparison was included, as it was deemed the most relevant. Unfortunately,

Fleiss’ 𝜅 was not calculated for this study, limiting direct comparison with the other

included studies.

3.1.2. Overall Meta-Analysis Results

The overall meta-analysis of IRR for RECIST 1.1 yields a pooled 𝜅 estimate of 0.66 (95%

CI: 0.56 to 0.73), indicating substantial agreement among raters across studies as seen in

Figure 3.1. This forest plot illustrates the individual 𝜅 estimates for each study, along

with their confidence intervals, and the overall pooled estimate. The pooled estimate and

associated 95% confidence interval, represented by the black diamond at the bottom, sug-

gests that, on average, raters are able to agree on tumor measurements and classifications

with a substantial level of reliability.

However, the analysis also reveals considerable heterogeneity, with a Q statistic of 250.82

(df = 12, p < 0.0001), an I² value of 95.96%, and a tau² of 0.23. These values suggest

that nearly all of the observed variability in 𝜅 estimates is attributable to real differences

between studies rather than chance alone. Such high heterogeneity is not uncommon in

meta-analyses of rater agreement, especially when studies differ in design, populations, or

rater experience, and it underscores the importance of interpreting the pooled estimate

with caution.
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Figure 3.1.: Forest plot of inter-rater reliability (IRR) meta-analysis

For completeness, separate meta-analyses are also conducted for studies reporting Fleiss’

𝜅 and Cohen’s 𝜅 individually. The pooled Fleiss’ 𝜅 is 0.65 (95% CI: 0.54 to 0.74; Q

= 224.23, df = 8, p < 0.0001; I² = 96.80%; tau² = 0.23), and the pooled Cohen’s 𝜅
is 0.67 (95% CI: 0.46 to 0.81; Q = 25.22, df = 3, p < 0.0001; I² = 88.48%; tau² =

0.34). These supplemental analyses, along with their corresponding figures, are provided

in the appendix. The results for both measures are consistent with the overall finding

of substantial inter-rater agreement, though the high heterogeneity persists within each

subgroup and is consistent with several of the footnotes in Table 3.1. Meta-analysis plots

and funnel plots for Cohen’s 𝜅 and Fleiss’ 𝜅 are available in the appendix at Figure A.2

and Figure A.1, respectively.

To assess the potential for publication bias, funnel plots are generated for each inter-rater

reliability measure included in the meta-analysis as seen in Figure 3.2. This funnel plot

displays the individual study estimates of IRR on the x-axis against their standard errors

on the y-axis. The studies are represented by points, with the overall pooled estimate

indicated by a vertical line. The funnel plot is expected to be symmetric around the

pooled estimate if there is no publication bias or small-study effects.

Visual inspection of these plots suggests the presence of asymmetry, raising concerns about

apparent publication bias. To formally test for this, Egger’s test for funnel plot asymme-

try is performed using the regtest() function from the metafor package. The results of
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Egger’s test are statistically significant (p = 0.002), providing further evidence that pub-

lication bias or small-study effects may be present in the included studies. These findings

should be considered when interpreting the pooled estimates, as they indicate that the

observed effect sizes may be influenced by factors such as selective reporting or differences

in study size.

Figure 3.2.: Funnel plot of inter-rater reliability (IRR) meta-analysis

However, the asymmetry observed in the funnel plot should not be interpreted solely as

evidence of publication bias. It is likely influenced by the small sample size of the clinical

trial data and the fact that all clinical trials were conducted by the same research group.

Additionally, Egger’s test is generally recommended for meta-analyses with at least 10

studies, and our analysis includes just slightly over that minimum recommendation at

13. This data limitation should be considered when interpreting the results. Another

possible explanation for the observed asymmetry is that the clinical trials may simply

have different inter-rater reliability compared to the non-clinical trial studies, potentially

reflecting a different underlying “population” of raters than the radiologists used in almost

all other studies. This clustering of clinical trials in the funnel plot suggests a potential

limitation of the meta-analysis, but does not necessarily indicate publication bias.

More likely, the results reflect small study effects, a common phenomenon in meta-analyses

where smaller studies tend to report larger effect sizes than larger studies. Methodological

differences may also contribute, as seen in Oubel et al. (44), where raters selected tumors
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at baseline by consensus rather than independently. This approach can overestimate

inter-rater reliability, as consensus selection increases the likelihood of agreement among

raters.

An additional observation from the meta-analysis is that the four clinical trials included

in the dataset appear to cluster together in terms of effect size, with the funnel plot

suggesting these studies are distributed around a different mean (visually estimated at

~0.45) compared to the mean calculated for all studies pooled together. This pattern may

indicate that inter-rater reliability is somewhat lower in clinical trial settings than in non-

clinical trial contexts. However, this trend is not formally tested for statistical significance

due to the small sample size of the clinical trial subgroup. As such, this observation should

be interpreted cautiously and considered a potential area for further investigation.

Despite high heterogeneity in the studies and potential small sample bias, the overall

findings of the meta-analysis suggest that inter-rater reliability for RECIST 1.1 is moderate

to substantial, with a pooled 𝜅 estimate of 0.66. Even in the context of clinical trials, where

the pooled 𝜅 was slightly lower at approximately 0.45, there still appears to be a reasonable

level of agreement among raters from a statistical perspective. However, this level of

agreement may not be sufficient to ensure consistent and reliable tumor measurements

across different raters within a clinical care or trial context, where precise measurements

are crucial for treatment decisions and trial outcomes.

The results of our follow-up analyses, particularly the evaluation of differences in hazard

ratios and important time-to-event outcomes, thus investigate the practical implications

of these findings in clinical trial settings.
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3.2. Concordance in Clinical Trial Outcomes

3.2.1. Site Investigators and Central Reviewers Agreement Appears
Study-Dependent

To assess inter-rater reliability (IRR), we examine pairwise Cohen’s 𝜅 estimates across the

studies, as summarized in Table 3.2. This table provides a detailed overview of the pairwise

Cohen’s 𝜅 estimates, with each column representing a study and each row representing

a pairwise comparison between raters. The estimates are presented alongside their 95%

confidence intervals and the number of images jointly assessed, providing a clear picture

of the level of agreement between the raters in each study. The table also includes the

number of cases assessed by each rater, which is important for interpreting the reliability

estimates.

In two of the three studies (NCT03434379 and NCT03631706), the highest agreement

is observed between the two site investigators, whereas in NCT02395172, this pair has

the lowest agreement suggesting potentially high variability or inconsistency in which

raters disagree with one another. Moreover, the range of Cohen’s 𝜅 values across all

studies is broad, from 0.286 to 0.803, further indicating substantial variability in IRR.

This variability is consistent with the high heterogeneity observed in the meta-analysis,

suggesting that agreement between raters can differ considerably depending on the study

context and rater pairings. The pairwise Cohen’s 𝜅 estimates provide a useful summary

of the level of agreement between raters, but the follow-up analyses using linear mixed

effects (LME) models with estimated marginal means (emmeans) provide a more nuanced

understanding of the differences between raters.

It is worth explicitly noting that the value in adding these estimated differences on top of

the pairwise Cohen’s 𝜅 estimates is that they allow us to at least partially account for the

quasi-ordinal nature of the RECIST scale. That is, Cohen’s 𝜅 penalizes all differences

in ratings equally, regardless of whether the differences are of meaning. For example,

depending on the context, one might consider stable disease, partial response, and complete

response all as sufficient outcomes, but the IRR analysis will necessarily penalize any

differences in outcomes by rater. By contrast, using a linear mixed effects model with the

RECIST outcomes set to an ordinal scale allowed us to assign a crude numeric value to

outcomes that reflect the ordered nature of the scale. This additional layer of analysis can
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help to clarify the nature of the differences between raters and provide insights into how

these differences may impact clinical decision-making or trial outcomes.
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Comparison NCT02395172 NCT03434379 NCT03631706

Central Reviewer 1 vs Central

Reviewer 2

𝜅 = 0.485 [0.437, 0.534], n=946 𝜅 = 0.352 [0.284, 0.419], n=466 𝜅 = 0.513 [0.465, 0.56], n=822

Site Investigator vs Central

Reviewer 2

𝜅 = 0.677 [0.636, 0.719], n=967 𝜅 = 0.307 [0.233, 0.382], n=425 𝜅 = 0.424 [0.374, 0.474], n=788

Site Investigator vs Central

Reviewer 1

𝜅 = 0.803 [0.769, 0.836], n=962 𝜅 = 0.286 [0.211, 0.361], n=424 𝜅 = 0.49 [0.441, 0.539], n=787

Table 3.2.: Pairwise Cohen’s 𝜅 estimates across studies

Note: While all raters were intended to evaluate the same number of cases, in practice the central reviewers assessed a more complete set of cases

than the site investigators. As a result, the central reviewers have more cases represented in the figure.
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Full model results for the LMEs are provided in the appendix (Equation A.1, Equation A.2,

and Equation A.3), as these are not the primary focus of this section and the point

estimates of these models should not be interpreted directly because the RECIST scale

can only be considered quasi-ordinal. The main emphasis here, instead, is on the pairwise

comparisons of raters using estimated marginal means. As discussed in the Methods

(Section 2.2.2.1), the absolute values of these estimates should not be over-interpreted

due to the quasi-ordinal nature of the scale; rather, the focus should be on whether the

differences are large enough to suggest meaningful disagreement or concordance between

raters.

We present here the results of the pairwise comparisons from one of the studies,

NCT03631706, in Table 3.3 to demonstrate patterns of disagreement that can occur.

The complete set of results for all three studies can be find at Table A.1. This table

summarizes the pairwise contrasts of raters from the linear mixed effects model, including

the estimated differences in RECIST outcomes, standard errors, degrees of freedom,

t-ratios, and p-values. The p-values can be understood as whether a given pairwise

comparison is statistically significant, with the Bonferroni method applied to adjust for

multiple comparisons. The stars in the p-value column indicate significance levels at
∗𝑝 < 0.05, ∗∗𝑝 < 0.01, and ∗∗∗𝑝 < 0.001.

In the example of NCT03631706, there is a significant difference between the central re-

viewers as well as a significant difference between the site investigator and central reviewer

1, but no difference between the site investigator and central reviewer 2. Meanwhile, stud-

ies NCT02395172 and NCT03434379 show no statistically significant differences between

any of the raters, suggesting that the raters are in agreement on the RECIST outcomes

for these studies.

Contrast Estimate SE df t.ratio p.value

Site Inv. - Reader 1 0.228 0.041 2507.766 5.630 0∗∗∗

Site Inv. - Reader 2 0.064 0.041 2507.790 1.586 0.2519

Reader 1 - Reader 2 -0.164 0.042 2501.910 -3.865 3e-04∗∗∗

Table 3.3.: Pairwise contrasts of raters from the linear mixed effects model in
NCT03631706

These results might seem counterintuitive when comparing them to the IRR analyses

as, for example, the Cohen’s 𝜅 estimates seen in study NCT03434379 might lead one to
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believe there are substantial differences between the raters. However, the LME analyses

suggest that these differences are not statistically significant when accounting for the

quasi-ordinal nature of the data, indicating that the raters are generally in agreement

on the RECIST outcomes for this study. This discrepancy highlights the importance

of considering both pairwise comparisons and more complex modeling approaches when

evaluating inter-rater reliability in clinical trials. By employing a combination of methods,

we can gain a more comprehensive understanding of how raters interpret and apply the

RECIST criteria, ultimately informing efforts to improve consistency and accuracy in

tumor response assessment.

3.2.2. Differences Between Raters Extend to Objective Response Rate

While overall agreement between raters is generally acceptable when measuring basic IRR

and no differences between raters are identified in two of the three studies when using

a mixed modeling strategy, there are notable exceptions in agreement when it comes to

evaluating ORR. The omnibus Cochran’s Q test for each study are available in Table 3.4;

this table summarizes the results of Cochran’s Q test for ORR analyses across the three

studies. The table includes the study name, Cochran’s Q statistic, p-value, and degrees

of freedom (df) for each study. The p-values are presented in a format that indicates

statistical significance, with stars denoting levels of significance at ∗𝑝 < 0.05, ∗∗𝑝 < 0.01,

and ∗∗∗𝑝 < 0.001.

The results of the Cochran’s Q test indicate that there are statistically significant dif-

ferences in ORR among the raters for studies NCT03434379 and NCT03631706, with

p-values less than 0.05 in both cases. This suggests that at least one rater in each of these

studies classifies responses differently from the others. To further explore these differences,

pairwise McNemar’s post-hoc tests are conducted using the mcnemar.test() function in

R, which is appropriate for paired nominal data.

Study Cochran’s Q p-value df

NCT02395172 0.05 0.973 2

NCT03434379 6.33 0.042∗ 2

NCT03631706 12.07 0.002∗∗ 2

Table 3.4.: Cochran’s Q test results for objective response rate analyses.
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The post-hoc results of the pairwise McNemar’s tests, which provides a chi-squared statis-

tic on 1 degree of freedom, were summarized as p-values in Table 3.5. This table presents

the results of the pairwise McNemar comparisons between raters for each study, summa-

rized simply as the p-values of the pairwise comparisons. The p-values are presented in a

format that indicates statistical significance after Bonferroni adjustment, with stars denot-

ing levels of significance at ∗𝑝 < 0.05, ∗∗𝑝 < 0.01, and ∗∗∗𝑝 < 0.001. The results indicate

that, in NCT03434379, the site investigator disagreed significantly with central reviewer

2 (as indicated by a significant p-value), while in NCT03631706, significant disagreement

was observed between the site investigators and both central reviewers. The direction and

magnitude of differences between raters can vary across studies, however.

Study

Central Reviewer 1

vs. Central Reviewer 2

Site Investigator

vs. Central Reviewer 1

Site Investigator

vs. Central Reviewer 2

NCT02395172 1 1 1

NCT03434379 1 0.634 0.048∗

NCT03631706 1 0.018∗ 0.018∗

Table 3.5.: Pairwise post-hoc McNemar’s test results for ORR analyses: p-values.

To illustrate how these differences appear in the data itself, contingency table examples

for significant and non-significant pairwise comparisons are provided in Table 3.6 and Ta-

ble 3.7, respectively. That is, the contingency table in Table 3.6 shows how ORR data

looks in the event of significant disagreement between raters, namely that the difference

between off-diagonal cells is pronounced. On the contrary, the contingency table in Ta-

ble 3.7 illustrates a lack of significant disagreement, with balanced off-diagonal cell values.

(The full set of contingency tables for all studies can be found in the appendix at Table A.2,

Table A.3, and Table A.4).

Site: Response Site: No Response

Central : Response 55 16

Central: No Response 3 72

Table 3.6.: Contingency table for Central Reviewer 2 and Site Investigator in
NCT03631706.
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Site: Response Site: No Response

Central: Response 268 5

Central: No Response 5 50

Table 3.7.: Contingency table for Central Reviewer 2 and Site Investigator in
NCT02395172.

Of particular note in these contingency tables is that the overall number of disagreements

between site investigator and central reviewers is relatively low, with most cases showing

agreement on whether a response is present or not. This suggests that while there are some

differences in how responses are classified, the raters overall accuracy is generally quite

high. Based on the contingency table in Table 3.6, one might be tempted to conclude that

site investigators are more hesitant to classify someone as having a partial or complete

treatment response as an error in this direction could lead to a patient not receiving a

treatment that could be beneficial. However, this interpretation should be approached

with caution, as the differences in ORR are not necessarily indicative of a systematic bias

in one direction or another. In fact, the contingency tables in study NCT03434379 (see

Table A.3) show the opposite pattern, with the central reviewers being more likely to

classify patients as having a response than the site investigators.

Overall, the results of this sub-analysis further suggest that, when disagreements do occur,

they are typically between the site investigator and central reviewers, with the two central

reviewers generally in agreement with one another. However, the presence of significant

differences between raters in detection of ORR is study-dependent, and the direction of

any differences can vary across studies. Moreover, the overall number of disagreements

is relatively low, suggesting that while there may be some variability in how responses

are classified, the raters overall accuracy is generally quite high. This finding underscores

the importance of considering the context and specific characteristics of each study when

interpreting inter-rater reliability and agreement on treatment response.

3.2.3. Other Key Trial Outcomes Show No Differences Between Raters

While the ORR analyses reveal some significant differences between raters, it is worth

noting that ORR is typically only employed as a secondary outcome and is a more rudi-

mentary measure of treatment response than the more complex time-to-event outcomes.
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The latter are often more clinically relevant and can provide a more nuanced understand-

ing of treatment effects. In this section, we present the results of time-to-event analyses,

which are conducted for three key outcomes: TTP, TTR, and DoR. These analyses are

performed using both Kaplan-Meier survival curves and comparison of the hazard ratios

derived from Cox proportional hazards models, with the aim of assessing whether there

are any significant differences between site investigators and central reviewers in terms of

these important clinical endpoints.

Kaplan-Meier curves provide a visual representation of the time-to-event data and are

particularly valuable for comparing event rates between different groups—in this case, be-

tween assessments made by site investigators versus central reviewers. In these curves,

the y-axis represents the probability of being event-free (i.e., survival probability), while

the x-axis represents time. For TTP analyses, the event of interest is disease progression,

and the curves show the probability of remaining progression-free over time. Similarly, for

TTR, the curves display the probability of remaining response-free (i.e., not yet having

achieved a response), and for DoR, they show the probability of maintaining a response

without progression. When interpreting these curves visually, curves that are higher in-

dicate better outcomes for TTP and DoR (longer time to progression or longer duration

of response), while for TTR, a lower curve is preferable (faster time to response). If the

curves for different raters overlap substantially, this suggests strong agreement in their

assessments. Conversely, separation between curves indicates systematic differences in

how raters are evaluating events, with the degree of separation reflecting the magnitude

of disagreement. Statistical significance of these visual differences can be assessed using

log-rank tests, which evaluate whether the observed separation between curves could have

occurred by chance.

Kaplan-Meier survival curves for TTP, TTR, and DoR in study NCT03434379 are shown

in Figure 3.3, Figure 3.4, and Figure 3.5, respectively as examples of the time-to-event

analyses. Complete results for the three studies including all Kaplain-Meier curves, log(-

log(Survival)) plots, and Schoenfeld residuals plots are provided in the appendix at Sec-

tion A.2.3.1, Section A.2.3.2, and Section A.2.3.3.
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Figure 3.3.: Kaplan-Meier survival curves for TTP in NCT03434379

Figure 3.4.: Kaplan-Meier survival curves for TTR in NCT03434379
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Figure 3.5.: Kaplan-Meier survival curves for DoR in NCT03434379

Notably, in study NCT03434379, where significant differences in ORR have been observed

in the preceding analyses, the plot TTP (Figure 3.3) suggests that the site investigator

may be quicker to assess progression than the central reviewer, as the site investigator’s

curve appears to be consistently below that of the central reviewers. Likewise, the site

investigator might be slower to identify and classify response to treatment compared to

the central reviewer, as indicated by the site investigator’s curve being consistently above

that of the central reviewers in the TTR plot (Figure 3.4). However, none of the other

studies show such clear differences in time-to-event outcomes between raters, and the

overall results suggest that, while there may be some variability in how raters assess

time-to-event outcomes, these differences do not appear to be systematic or clinically

meaningful.

To more accurately quantify differences in time-to-event outcomes, we employ Cox pro-

portional hazards models to estimate hazard ratios (HRs) for each outcome. We verify

the proportional hazards assumption through visual inspection of log(-log(Survival)) plots,

which show approximately parallel curves between groups, and Schoenfeld residual plots,

which confirm no systematic trends or deviations over time across all outcomes. These

diagnostic checks support the validity of our Cox models for subsequent hazard ratio analy-

ses. (The complete set of diagnostic plots for the Cox models, including log(-log(Survival))
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plots and Schoenfeld residuals plots, are provided in the appendix at Section A.2.3.)

To formally assess differences in time-to-event outcomes, we calculate the differences in

hazard ratios between site investigators and central reviewers for all studies and out-

comes. As an aside on interpretation of the values: all differences are calculated as

Site Investigator − Central Reviewer1, meaning that a positive difference indicates that

the site investigator has a greater hazard ratio and thus a shorter time to event occur-

rence, while a negative difference indicates that the central reviewer has a greater hazard

ratio and thus a shorter time to event occurrence. We avoid interpreting the differences in

subjective terms of e.g. “good” or “bad” because the interpretation of these differences is

context-dependent and can vary based on the specific clinical scenario, and instead focus

on both statistical significance and whether the differences indicate a faster or slower time

to event occurrence.

Across all comparisons, no significant differences are found except for a single pairing in

study NCT03434379, where the site investigator has a significantly lower hazard ratio for

TTR compared to central reviewer 1. This marked difference between raters can be noted

in Figure 3.4, which shows the KM survival curves for TTR in NCT03434379. In this

case, the site investigator’s curve is consistently and clearly above that of central reviewer

2, indicating a longer time to response for the site investigator (𝑝 = 0.035). This is in

contrast to the log-rank test results, which do not detect the presence of a statistically

significant difference between any groups.

And again, visual inspection of the TTP plot in Figure 3.3 for NCT03434379 suggests that

the site investigator may be quicker to assess progression than the central reviewers, as

the site investigator’s curve appears to be consistently below that of the central reviewers.

This difference is quantified in the calculation of hazard ratios, wherein the site investigator

has a greater hazard ratio than the central reviewers. This difference trends towards

significance when comparing the site investigator with central reviewer 1 (𝑝 = 0.096),

but as can be seen in Table 3.8, none of the differences in hazard ratios are statistically

significant across the studies for TTP.

1Cox modeling is done with the raters set as a factor (i.e. ordinal) variable in R with Site Investigator
as the reference value. Thus, its estimate is always 0, the other raters’ HRs are relative to this value,
and the direction of the difference indicates whether the site investigator has a greater or lesser hazard
ratio than the central reviewers.
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study Contrast estimate SE p.value

NCT02395172 Site Inv. - Reader 1 0.109 0.060 0.166

NCT02395172 Site Inv. - Reader 2 -0.065 0.047 0.354

NCT03434379 Site Inv. - Reader 1 0.242 0.117 0.096.

NCT03434379 Site Inv. - Reader 2 0.223 0.111 0.112

NCT03631706 Site Inv. - Reader 1 -0.117 0.109 0.532

NCT03631706 Site Inv. - Reader 2 0.069 0.100 0.773

Table 3.8.: Differences in Hazard Ratios between site investigators and central reviewers
for time to progression (TTP)

study Contrast estimate SE p.value

NCT02395172 Site Inv. - Reader 1 0.000 0.106 1

NCT02395172 Site Inv. - Reader 2 0.006 0.060 0.995

NCT03434379 Site Inv. - Reader 1 -0.441 0.317 0.346

NCT03434379 Site Inv. - Reader 2 -0.667 0.269 0.035∗

NCT03631706 Site Inv. - Reader 1 0.112 0.092 0.44

NCT03631706 Site Inv. - Reader 2 0.069 0.089 0.719

Table 3.9.: Differences in Hazard Ratios between site investigators and central reviewers
for time to response (TTR)

study Contrast estimate SE p.value

NCT02395172 Site Inv. - Reader 1 -0.068 0.187 0.931

NCT02395172 Site Inv. - Reader 2 0.151 0.176 0.666

NCT03434379 Site Inv. - Reader 1 -0.275 0.520 0.858

NCT03434379 Site Inv. - Reader 2 -0.036 0.523 0.997

NCT03631706 Site Inv. - Reader 1 -0.068 0.237 0.955

NCT03631706 Site Inv. - Reader 2 0.332 0.263 0.417

Table 3.10.: Differences in Hazard Ratios between site investigators and central reviewers
for duration of response (DoR)
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More generally, only one statistically significant difference in hazard ratios is found across

all studies and outcomes, which is for TTR in NCT03434379. This suggests that, while

there may be some variability in how raters assess time-to-event outcomes, these differences

do not generally appear to be statistically or clinically relevant for an individual study.

The results of the hazard ratio analyses are summarized in Table 3.8, Table 3.9, and

Table 3.10 for TTP, TTR, and DoR, respectively.

Although few if any individual differences are found between the site investigators and

central reviewers in terms of time to event outcomes, it remains possible that small, sys-

tematic differences could be detected with a larger sample size of studies and raters. To

address this, meta-analyses of the time-to-event outcomes are conducted, explored in the

next section. These meta-analyses aim to determine whether any systematic differences

between site investigators and central reviewers could be identified across multiple studies,

thereby providing a more robust assessment of inter-rater reliability for RECIST 1.1 in

clinical trial settings.

3.2.4. Meta-Analyses Confirm Lack of Differences Between Raters

The meta-analyses of time-to-event outcomes (TTP, TTR, and DoR) reveal no statistically

significant differences between site investigators and central reviewers across studies. The

forest plots in Figure 3.6, Figure 3.7, and Figure 3.8 illustrate the pooled hazard ratios

for each outcome, with the central vertical line indicating no difference (Δ𝐻𝑅 = 0). The

squares represent the point estimates of the hazard ratios for each study, with the size of

the square proportional to the weight of the study in the meta-analysis. The horizontal

lines extending from each square represent the 95% confidence intervals for the hazard

ratios, and the diamond at the bottom represents the pooled estimate across all studies. A

diamond that does not cross the vertical line indicates a statistically significant difference,

while a diamond that crosses the line indicates no significant difference.
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Figure 3.6.: Forest plot of hazard ratios for TTP from the meta-analysis of time to event
outcomes

Figure 3.7.: Forest plot of hazard ratios for TTR from the meta-analysis of time to event
outcomes
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Figure 3.8.: Forest plot of hazard ratios for DoR from the meta-analysis of time to event
outcomes

For each outcome, the pooled difference in hazard ratios is small and the 95% confidence

intervals include zero, indicating a lack of systematic bias between rater groups. Specifi-

cally, for TTP, the difference in hazard ratios is 0.06 (95% CI: -0.05 to 0.17, p = 0.262,

Figure 3.6), with moderate heterogeneity (I² = 63.4%, �² = 0.0112, heterogeneity p =

0.0155, df = 5). For TTR, the difference is 0.02 (95% CI: -0.06 to 0.09, p = 0.691, Fig-

ure 3.7), with negligible heterogeneity (I² = 0.01%, �² = 0.0000, heterogeneity p = 0.0739,

df = 5). For DoR, the difference is 0.05 (95% CI: -0.14 to 0.25, p = 0.590, Figure 3.8),

with no observed heterogeneity (I² = 0.0%, �² = 0.0000, heterogeneity p = 0.771, df =

5).

Interpretation of the heterogeneity statistics further supports these findings. The I² statis-

tic quantifies the percentage of total variation across studies attributable to heterogeneity

rather than chance. For TTP, an I² of 63.4% indicates moderate heterogeneity, suggesting

that some observed differences in hazard ratios may reflect real differences between stud-

ies. In contrast, I² values near zero for TTR and DoR indicate that almost all variability

is due to sampling error rather than true heterogeneity. The �² statistic represents the

estimated between-study variance in true effect sizes, with higher values (as in TTP) in-

dicating more variability in underlying effects, and values near zero (as in TTR and DoR)

indicating little to no between-study variance. The heterogeneity test p-value, derived
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from Cochran’s Q test, assesses whether observed variability in effect sizes exceeds what

would be expected by chance. A significant p-value (e.g., p = 0.0155 for TTP) suggests

real heterogeneity, while non-significant values (as in TTR and DoR) indicate no evidence

of excess heterogeneity.

Across all outcomes, positive values indicate that site investigators tend to report slightly

higher hazard ratios than central reviewers, suggesting more rapid assessments of pro-

gression, response, or shorter durations of response. However, as previously noted, none

of these differences reach statistical significance i.e. the 95% confidence intervals for all

outcomes include zero.

Although none of the meta-analyses reach significance, it is still worthwhile noting that

not all data points are fully independent, as each study contributes two sets of central

reviewer–site investigator pairs. This could potentially double-weight some trials and

narrow confidence intervals. Nevertheless, the consistent lack of significant differences

across outcomes supports the robustness of these findings. In larger meta-analyses or those

with more diverse reviewer groups, the non-independence of central reviewers who likely

share training, software, and protocols should be considered when interpreting results.

3.2.5. Equivalence Between Raters Established for TTR and TTP

To formally assess whether the outcomes measured by site investigators and central re-

viewers could be considered equivalent, we apply the TOST procedure to the differences

in hazard ratios for TTP, TTR, and DoR. The equivalence bounds are set a priori as

hazard ratios (HRs) of 0.8 to 1.25, which correspond to -0.223 to 0.223 on the log scale.

These bounds represent the range of differences that would be considered not clinically

meaningful, and thus, if the 90% confidence interval for the difference in log hazard ratios

falls entirely within this interval, equivalence can be concluded.

The TOST plots in Figure 3.9, Figure 3.10, and Figure 3.11 summarize the results of

the TOST procedure for TTP, TTR, and DoR, respectively. These plots provide a visual

framework for interpreting equivalence testing results. In each plot, the dashed vertical

lines represent the equivalence bounds of -0.223 to 0.223 on the log scale (corresponding

to HRs of 0.8 to 1.25). The area between these lines defines the region of practical

equivalence. If the 90% confidence interval for the difference in means (represented by the

horizontal line with the point estimate as a dot) lies entirely within this region, equivalence
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is supported. If the confidence interval crosses either bound, however, equivalence cannot

be established.

Our analyses show distinct patterns across the three outcomes. For TTP and TTR, the

confidence intervals are fully contained within the equivalence bounds, providing strong

evidence of practical equivalence between site investigators and central reviewers for these

outcomes. In contrast, the DoR interval marginally exceeds the upper equivalence bound,

suggesting that while the difference is likely small, we cannot formally conclude equivalence

for this outcome with the available data.

−0.2 0.0 0.2
ln(Hazard Ratio) Difference

90% Confidence Interval of Estimate

Two One−Sided Tests: Time to Progression

Figure 3.9.: Equivalence testing for time to progression (TTP) between site investigators
and central reviewers using the TOST method.
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−0.2 0.0 0.2
ln(Hazard Ratio) Difference

90% Confidence Interval of Estimate

Two One−Sided Tests: Time to Response

Figure 3.10.: Equivalence testing for time to response (TTR) between site investigators
and central reviewers using the TOST method.

−0.2 0.0 0.2
ln(Hazard Ratio) Difference

90% Confidence Interval of Estimate

Two One−Sided Tests: Duration of Response

Figure 3.11.: Equivalence testing for duration of response (DoR) between site investigators
and central reviewers using the TOST method.

The quantitative TOST analyses indicate that both TTP and TTR are statistically equiv-

alent between site investigators and central reviewers. For TTP, the 90% confidence

interval for the difference in log hazard ratios is [-0.05, 0.177], with an equivalence test

result of t(5) = -2.840 and a p-value of 0.0181. For TTR, the 90% confidence interval is
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[-0.064, 0.096], with t(5) = -5.214 and a p-value of 0.00171. In both cases, the confidence

intervals fall entirely within the equivalence bounds, supporting the conclusion that any

differences between site investigators and central reviewers are not clinically meaningful

for these outcomes. In contrast, for DoR, the 90% confidence interval is [-0.147, 0.255]

with t(5) = -1.697 and a p-value of 0.0752. Here, the upper bound of the confidence

interval slightly exceeds the equivalence margin, and thus formal equivalence cannot be

established. However, the interval is close to the bounds, suggesting that the two groups

likely have similar durations of response, but the available data do not provide sufficient

certainty to draw a definitive conclusion.

It is important to note several limitations when interpreting these results. First, the

number of studies and events included in the DoR analysis is limited, resulting in wider

confidence intervals and reduced statistical power to detect equivalence. This limitation is

common in meta-analyses of clinical trial endpoints, especially for outcomes that are less

frequently observed or reported. Second, the choice of equivalence bounds, while based on

conventional thresholds for clinical relevance, remains somewhat arbitrary and may not

capture all perspectives on what constitutes a meaningful difference. Finally, the TOST

procedure assumes that the data are sufficiently powered to detect equivalence; in cases

where sample sizes are small, failure to demonstrate equivalence may reflect limited data

rather than true differences between groups.

Overall, these results provide strong evidence that site investigators and central reviewers

yield equivalent results for TTP and TTR, and likely similar results for DoR, though the

latter cannot be confirmed with high confidence. These findings support the robustness of

RECIST-based time-to-event endpoints to rater differences in the context of clinical trials,

but also highlight the need for larger studies to more definitively assess equivalence for

less common outcomes such as DoR.
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3.3. RECIST Thresholds are Robust

This section presents a series of sensitivity analyses designed to evaluate how key trial

outcomes respond to changes in the RECIST thresholds for disease progression and partial

response. For each analysis, we systematically recalculate RECIST-based outcomes using

the available SLD data, varying the progression and response thresholds across a plausible

range from [0, 100]%. The results are visualized as heatmaps, which provide an intuitive

summary of how inter-rater reliability, objective response rate, and time-to-event outcomes

shift as the thresholds are altered.

In these heatmaps, the axes represent the progression and partial response thresholds,

while the color scale indicates either the deviation from the original estimate (for IRR

and time-to-event outcomes) or the p-value from Cochran’s Q test (for ORR). Rather

than focusing on statistical significance at each point, these visualizations are intended

to highlight the overall sensitivity or robustness of the outcomes to threshold selection.

Regions of stability, sensitivity, or missing data can be readily identified, allowing for a

nuanced interpretation of how RECIST criteria perform under different assumptions. Full

details for interpreting each heatmap are provided in the relevant sub-sections below.

It is also important to note that, in the cases of ORR and TTR, changes in the threshold

values for progression do not affect the corresponding heatmaps, and similarly, changes in

the threshold values for partial response do not affect the heatmaps for TTP. Despite this,

all heatmaps were plotted with both dimensions to provide a consistent visual scale for

comparison across outcomes. This approach allows readers to directly compare the sensi-

tivity of different endpoints to threshold selection, even when one axis does not influence

a particular outcome.

3.3.1. IRR Shows Stability Across Thresholds

The IRR sensitivity analyses, visualized as heatmaps, illustrate how inter-rater reliability

responds to changes in the RECIST thresholds for disease progression and partial response.

For both the Target Lesion and Overall Outcome, the heatmaps display values relative

to the original IRR calculated at the standard RECIST criteria (20% progression, 30%

response), with intersecting black lines marking these reference thresholds. Negative values

indicate a decrease in IRR compared to the original, while positive values indicate an

increase.
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For the Target Lesion outcome, the heatmaps (see Figure 3.12) show a clear trend: as

either threshold approaches 100%, 𝜅 values decrease. This is expected, as very few cases

are classified as having a response or progression at such extreme thresholds, reducing

the opportunity for agreement between raters. Additionally, in clinical trials, patients are

typically removed from the study once progression is observed, making high progression

thresholds less relevant and further limiting available data in these regions. Aside from

this expected decline at the extremes, the heatmaps for the Target Lesion outcome do not

display systematic patterns across studies, suggesting that IRR is generally stable across

a wide range of plausible threshold values.
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Figure 3.12.: Heatmap of change in inter-rater reliability (IRR) across RECIST thresholds,
target lesions
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Figure 3.13.: Heatmap of change in inter-rater reliability (IRR) across RECIST thresholds,
overall response

The Overall Outcome is a composite measure that incorporates information from the Tar-

get Lesion, Non-Target Lesion, and New Lesion outcomes, providing a more comprehensive

assessment of tumor response. The heatmaps for the Overall Outcome (Figure 3.13) dis-

play a similar lack of systematic trends or abrupt changes in IRR as thresholds are varied.

Notably, the deviation in 𝜅 for the heatmaps of target lesions ranges from -0.422 to 0.119,

while the deviation in 𝜅 for th heatmaps of overall response ranges from -0.103 to 0.093.
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This indicates that IRR can be somewhat sensitive to changes in the RECIST thresh-

olds used for calculating the Target outcome, particularly at extreme values, but the IRR

for Overall response is well-stabilized by the information gain from non-target and new

lesions.

The much smaller range of 𝜅 deviations in the overall outcome heatmaps suggests that

the RECIST criteria are robust to changes in the thresholds for disease progression and

response, and that the overall IRR is not significantly affected by these changes. This

robustness supports the reliability of RECIST when applied in a comprehensive manner

across different studies and raters.

3.3.2. ORR Unaffected by RECIST Thresholds

The interpretation of ORR heatmaps differs from the IRR analyses in that we focus on

p-values from Cochran’s Q tests rather than differences in effect estimates. This approach

is selected because comparing differences in p-values across thresholds has limited interpre-

tive value without constant reference to the conventional alpha threshold of 0.05. Instead,

our analysis aims to identify regions where statistically significant differences might emerge

either within or across studies as thresholds change.

While more precise statistical analyses could be performed by selecting specific clinically

relevant thresholds for progression and partial response, then conducting targeted pair-

wise comparisons between raters at these points, such an approach would require a priori

hypotheses about optimal thresholds. Without such predefined hypotheses, we instead uti-

lized heatmaps as a visualization tool to comprehensively examine the sensitivity of ORR

measurements to changes in RECIST thresholds and their subsequent effect on inter-rater

differences.

For all outcomes studied in this analysis, seen in Figure 3.14, we observed no systematic

changes in Cochran’s Q p-values across the range of RECIST thresholds. For example, in

study NCT02395172, the p-values within about ± 10% of the original response threshold

remained consistently above the conventional alpha threshold of 0.05, indicating no sig-

nificant differences between raters. However, nearly the opposite pattern was observed in

NCT03631706, where p-values were consistently below or near 0.05 within ± 10% of the

original response threshold. Above all, given the relatively small number of participants

who reached a disease response at the original threshold, it is likely reasonable to conclude
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that most of the variation seen within plots here is due to sampling error rather than

systematic differences between raters.

NCT03631706

NCT03434379

NCT02395172

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Disease Progression Threshold

P
ar

tia
l R

es
po

ns
e 

T
hr

es
ho

ld

p−value

0.25

0.50

0.75

1.00

Site Investigator vs. Averaged Central Reviewer
Objective Response Rate: Sensitivity of RECIST in Cochran's Q

Figure 3.14.: Heatmap of Change in Differences between Raters for Objective Response
Rate (ORR) across RECIST thresholds
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3.3.3. Time-to-Event Outcomes Show no Patterns Across Changing
Thresholds

To evaluate how classification threshold changes influenced the estimated risk associated

with reviewer assessments across the time-to-event outcomes, we conducted a difference-in-

differences (DiD) analysis comparing hazard ratios between site investigators and central

reviewers. In all Cox proportional hazards models, the site investigator served as the

reference group, and thus their hazard ratio remained constant across thresholds. The

central reviewer’s hazard ratio, by contrast, varied depending on changes in the RECIST

thresholds for disease progression and response.

As noted in the Methods section in Equation 2.14, the calculations for the DiD analysis

can be simplified to the following equation:

ΔRECIST − ΔSensitivity = 𝐻𝑅Central Reviewer New − 𝐻𝑅Central Reviewer Original

where ΔRECIST represents the difference in hazard ratios between the site investigator

and central reviewer at the original RECIST thresholds, and ΔSensitivity represents the

difference in hazard ratios at any given new threshold. The DiD value thus represents the

change in the central reviewer’s hazard ratio relative to the site investigator’s hazard ratio

as the RECIST thresholds are varied.

A positive DiD value indicates that the central reviewer’s hazard ratio increased under the

new threshold. Conversely, a negative DiD suggests that the central reviewer’s estimated

hazard decreased under the new classification rule. Additionally, it should again be noted

that we refer here to a single central reviewer because we have averaged the hazard ratios

of the two central reviewers within each study. This averaging was done to simplify the

analysis and interpretation, as the two central reviewers generally agreed closely in their

hazard ratio estimates and the display and interpretation of such results would have been

unwieldy.

The TTP heatplot (Figure 3.15) shows generally decreasing values of DiD both when

the disease progression threshold is increased and decreased with the exception of study

NCT02395172. In this study, the DiD values slightly increased as the progression thresh-

old was raised. The general overall decreases in DiD values indicate that the central

reviewers showed, on average, a decrease in their estimated hazard ratios relative to the

site investigators as the disease progression threshold was increased (i.e. the discrepancy in
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HRs between the site investigator and central reviewer hazard ratios decreased). However,

changes in any direction are not generally noticeable at all within ∼ ±5% of the original

progression threshold, and large decreases in DiD values are only observed at the extremes

of the progression threshold range. This suggests that the RECIST thresholds for disease

progression are robust to changes in the progression threshold, and that the differences

between raters would not be expected to change significantly with small changes in the

progression threshold.
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Figure 3.15.: Heatmap of Change in Differences between Raters for Time to Progression
(TTP) across RECIST thresholds
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Regarding the TTR and DoR sensitivity analyses, it is important to first note that the

TTR and DoR heatmaps contain extensive regions of missing data points. This occurs

due to the filtering procedure outlined in the Methods section (Section 2.2.3.1), where

data sets with fewer than (𝑘 − 1) ∗ 10 cases were excluded, with 𝑘 representing the number

of raters in the study. This filtering process ensures that a reasonable number of events

are present in each data set to allow for meaningful comparisons between raters. While

heatmaps without such filtering are available in the appendix (Figure A.33, Figure A.34),

they are not included in the main text as they do not provide additional insights beyond

what is already presented here. Furthermore, some of the observed DiD values in the

unfiltered maps are extremely large (exceeding an HR of 15 in some cases), making them

difficult to interpret in a meaningful clinical context.

With these considerations in mind, the results of the TTR sensitivity analyses in (Fig-

ure 3.16) generally mirror those of the TTP sensitivity analyses, with the notable excep-

tion that the DiD values for TTR tend to be larger in magnitude. This increased range

of DiD values likely stems from the fact that TTR events are generally less frequent than

TTP events, making the DiD values more sensitive to changes in the RECIST thresholds.

This interpretation is supported by the observation that up to 50% of the data points in

the TTR heatmaps are missing due to the filtering procedure, while the TTP heatmaps

maintain complete data coverage because a sufficient number of progression events were

observed at all threshold combinations.
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Figure 3.16.: Heatmap of Change in Differences between Raters for Time to Response
(TTR) across RECIST thresholds

Interpretation of the DoR heatmaps (Figure 3.17) follows a pattern almost identical to

that of the TTR heatmaps, with both displaying similar ranges of DiD values and sim-

ilar patterns across the RECIST thresholds. The DoR heatmaps also exhibit a large

number of missing data points due to the filtering procedure, but with an important dis-

tinction: missing data points are visible across both dimensions of the heatmap. This

occurs because the DoR outcome requires both an identified response event and a sub-
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sequent progression event to calculate a duration of response. Consequently, at certain

thresholds, response may be observed without progression, leading to an apparent step-

down pattern from left to right in the heatmaps. This pattern is particularly pronounced

in study NCT03631706.

NCT03631706

NCT03434379

NCT02395172

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Disease Progression Threshold

P
ar

tia
l R

es
po

ns
e 

T
hr

es
ho

ld

Delta from
Reference

−1.0

−0.5

0.0

0.5

Site Investigator vs. Averaged Central Reviewer
Duration of Response: Sensitivity of RECIST in Reviewer Hazard Ratio Differences

Figure 3.17.: Heatmap of Change in Differences between Raters for Duration of Response
(DoR) across RECIST thresholds

Collectively, the time-to-event sensitivity analyses provide strong evidence that the RE-

CIST thresholds for disease progression and response are robust to changes in the thresh-
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olds, with differences between raters remaining largely unaffected by threshold adjust-

ments. These findings align with the results from both the IRR and ORR analyses, which

similarly suggest that the RECIST criteria demonstrate general robustness to threshold

changes and that differences between raters are neither systematic nor clinically mean-

ingful. The heatmaps offer a clear visual representation of these findings, facilitating

identification of regions where the RECIST thresholds exhibit stability or sensitivity to

changes in the progression and response parameters.

In general, the DiD analyses reveal minimal systematic differences between site inves-

tigators and central reviewers across the range of RECIST thresholds examined, with

exceptions occurring only at extreme threshold values. This pattern reinforces the conclu-

sion that the RECIST criteria are robust to threshold adjustments and that differences

between raters remain clinically insignificant across a reasonable range of threshold val-

ues. Overall, these sensitivity analyses provide compelling evidence for the reliability of

RECIST-based time-to-event endpoints in clinical trials, supporting confidence in their

continued use for assessing treatment response.
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4. Discussion

Maintaining parallel structure with the previous chapters, this section discusses the results

of the analyses in three parts that are mostly self-contained: the IRR meta-analysis, the

site investigator and central reviewer analyses, and the sensitivity analyses. Each part

discusses the results of the analyses and their interpretation. Overall limitations of the

study are addressed in a separate subsection.

4.1. Results interpretation

4.1.1. IRR Meta-analysis

The results of our meta-analysis demonstrate that the inter-rater reliability (IRR) of the

RECIST 1.1 tumor measurement scale can be considered substantial based on Landis’

interpretation (77), with a pooled 𝜅 of 0.66, Cohen’s 𝜅 of 0.67, and a pooled Fleiss’ 𝜅 of 0.65.

These values indicate raters generally agree on the classification of tumor measurements,

supporting the reliability of RECIST 1.1 as a standardized assessment tool across different

evaluators.

However, our analysis also revealed potential limitations in the available evidence. Egger’s

test for funnel plot asymmetry yielded a p-value less than 0.05, suggesting the presence of

publication bias in the studies included in our meta-analysis. This finding indicates that

some relevant studies might have been excluded from our analysis, potentially affecting the

comprehensiveness of our results and warranting caution in their interpretation. Another,

potentially more likely explanation for the observed funnel plot asymmetry is that there

is simply a dearth of studies analyzing IRR in the context of RECIST 1.1, particularly

those that report IRR values for both site investigators and central reviewers as sponsors

of clinical trials generally would not have a clear incentive to calculate or report these

estimates. Such a lack of studies may lead to an overrepresentation of studies with higher
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IRR values, as these are more likely to be published, while studies with lower IRR values

may be underrepresented or unpublished.

Of particular note, we observed a distinct clustering pattern where data from clinical

trials centered around a lower mean 𝜅 value compared to data from non-clinical trials.

This pattern suggests that the IRR of the RECIST 1.1 tumor measurement scale may be

lower in clinical trial settings than in other contexts which is an important finding that

raises questions about the contextual reliability of RECIST 1.1. This difference could just

be an artifact of serial disagreements between raters within the same patients, but it is

also likely we are simply looking at a different data context considering the composition of

raters: non-clinical trial studies generally involved exclusively radiologists, while clinical

trials generally have two radiologists as the central reviewers and a mix of specialists

as the site investigators. This diversity in professional backgrounds and training could

explain the observed variability in IRR values and highlights the need for further research

to confirm these preliminary findings.

4.1.2. Site Investigator and Central Reviewer Analyses

Our pairwise IRR analyses reveal considerable variability in agreement between raters

within and across studies, irrespective of whether they are site investigators or central

reviewers. The wide range of pairwise Cohen’s 𝜅 values (0.286 to 0.803) across studies

indicates some degree of inconsistency in how different raters interpret and apply RECIST

criteria. However, Cohen’s 𝜅 penalizes all disagreements equally even if differences have

only small clinical relevance, which can be the case for RECIST, depending on the trial

outcome being used (e.g. TTP uses only progression as an indicator whereas ORR uses

partial and complete response information). To account for the quasi-ordinal nature of

the data, we conduct follow-up analyses using linear mixed effects models, which assign

numerical values to outcomes based on their clinical favorability. These analyses identified

significant differences between site investigator and one central reviewer, as well as between

two central reviewers themselves, but only in one of the three studies examined. The other

two studies show no significant differences between site investigators and central reviewers,

suggesting quantifiable rater disagreements are the exception rather than the norm.

Overall, these preliminary analyses indicate an absence differences between site investiga-

tors and central reviewers regarding objective response rates. The variations that do exist
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appear attributable to random variation rather than systematic bias with the RECIST cri-

teria, and a high degree of variability could be expected after examining the contingency

tables for response rates; the observed quantity of responses to treatment were gener-

ally quite low. However, it is important to note that such within-study differences were

also observed by Zhang et al. (48) in their examination of other clinical trial endpoints.

Their findings alongside our analyses underscore the importance of considering potential

rater discrepancies within individual trials, as they can lead to meaningful differences in

outcome assessments even when systematic biases are not present across multiple studies

(48).

Extending our analysis to time-to-event outcomes and hazard ratios further strengthens

these conclusions. Across individual studies, we identify only a single instance of signif-

icant difference in hazard ratios between site investigators and central reviewers, with

no consistent directional pattern of differences across studies. Pooling the data from all

three studies, we find no statistically significant differences in hazard ratios for time-to-

progression (TTP), time-to-response (TTR), or duration of response (DoR) between site

investigators and central reviewers. This finding suggests that, despite the observed vari-

ability in pairwise IRR analyses, the overall agreement between rater groups remains ro-

bust when considering time-to-event outcomes. However, the absence of differences based

on NHST does not necessarily imply equivalence between the two rater groups, as it is pos-

sible that differences exist but are not statistically significant due to limited sample sizes

or other factors. To address this limitation and provide a more rigorous assessment, we

employed formal equivalence testing using the TOST procedure, which yields particularly

informative results.

Our equivalence analyses demonstrated statistical equivalence between site investigators

and central reviewers for both TTP and TTR on a hazard ratio range of [0.80, 1.25]. How-

ever, equivalence could not be definitively established for DoR, though the data suggested

potential similarity. The inability to confirm equivalence for DoR likely stems from lim-

ited sample sizes and wider confidence intervals rather than true clinical differences, as

the point estimates were similar but the data lacked sufficient power to establish formal

equivalence within our pre-defined margins. It is also worthwhile noting that the equiv-

alence bounds we established could be interpreted as relatively liberal, which may have

contributed to being about to establish equivalence for TTP and TTR.

Regardless, these findings again align with the work of Zhang et al. on rater agreement

109



RECIST 1.1 Analysis CHAPTER 4. DISCUSSION

in tumor measurement classification although their approach lacked formal equivalence

testing. Likewise, recent work by Jacobs et al. (49) focusing specifically on breast cancer

trials similarly concluded that site investigators and central reviewers demonstrated good

agreement in tumor measurement classification. While their methodological approach also

paralleled ours in using meta-analysis to compare outcomes between rater groups, their

study was more limited in scope, focusing exclusively on progression-free survival without

conducting equivalence testing. Our use of formal equivalence testing and evaluation of

multiple additional endpoints provides a broader understanding of RECIST reliability

across different clinical contexts and allows for a more thorough assessment of IRR within

the RECIST 1.1 framework.

4.1.3. Sensitivity Analyses

Our sensitivity analyses of Target Outcomes revealed important insights into the robust-

ness of RECIST 1.1 criteria. While we observed some decreases in IRR when varying the

assessment thresholds, these reductions only manifested at extreme threshold values that

would rarely be encountered in clinical practice due to their clinical extremeness. Across

all three clinical trials, we found no consistent patterns in the sensitivity analyses of Target

Outcomes, which supports the conclusion that the IRR of the RECIST 1.1 tumor mea-

surement scale remains stable across reasonable variations in the thresholds used to define

target outcomes. This stability reinforces confidence in the reliability of RECIST 1.1 as a

standardized assessment framework for oncology trials.

Perhaps the most significant finding from our IRR sensitivity analyses was the critical con-

tribution of Non-Target Lesion and New Lesion measurements to the overall assessment

reliability. The Overall Response classifications demonstrated markedly greater stabil-

ity throughout our sensitivity analyses compared to Target Lesion measurements alone.

This enhanced stability can be attributed to the additional contextual information pro-

vided by Non-Target Lesion and New Lesion measurements, which effectively compensate

for potential variability in Target Lesion assessments. This finding underscores the im-

portance of comprehensive tumor assessment in clinical trials and validates the RECIST

1.1 approach of integrating multiple types of lesion measurements into the final response

determination.

With respect to trial endpoints, specifically ORR, TTP, TTR, and DoR, our sensitivity

analyses further confirmed the robustness of the RECIST 1.1 framework. Across a range
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of alternative threshold values for disease progression and response, we observed that the

RECIST 1.1 measurement scale maintained consistent performance characteristics. No-

tably, modifications to these thresholds produced no discernible impact on the degree of

agreement (or disagreement) between site investigators and central reviewers across any

of the three clinical trials examined. This consistency strongly suggests that RECIST

1.1 functions as a stable tool for tumor classification and that the currently established

threshold values are appropriate for clinical trial applications. The framework’s resilience

to threshold adjustments indicates that variations in measurement technique or interpreta-

tion within reasonable bounds are unlikely to substantially affect trial outcomes, lending

further credibility to RECIST 1.1 as a reliable standard for oncology research.

4.2. Study Limitations

4.2.1. Data Availability and Quality

Our meta-analysis faces several important limitations related to the quantity and char-

acteristics of available data. The analysis includes only 14 studies, just above the rec-

ommended minimum of 10 studies for meta-analytic approaches, which constrains the

generalizability of our findings. This limitation is compounded by the considerable hetero-

geneity among the included studies in terms of study design, rater populations, and cancer

contexts, potentially affecting the validity of our pooled estimates. The relatively small

sample size also prevents us from conducting meaningful subgroup analyses to explore the

influence of potentially important confounding variables, such as cancer type which is a

factor that could be particularly relevant given that imaging techniques and tumor growth

patterns vary substantially across different malignancies.

For our more in-depth analyses of site investigator and central reviewer agreement, we are

further limited by access to only three clinical trials. This restricted sample size inevitably

limits the generalizability of our findings regarding RECIST reliability in clinical trial set-

tings. A more fundamental limitation of the trial data is the standard imaging schedule,

typically performed at 4-6 week intervals. This relatively sparse temporal sampling limits

our ability to characterize tumor growth and decay patterns with precision, potentially

obscuring subtle differences in assessment timing between site investigators and central

reviewers. Consequently, our time-to-event analyses may lack sufficient sensitivity to de-

tect all meaningful differences between rater groups. The use of a tumor growth model
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that accounts for different growth and decay patterns could have provided a more nuanced

understanding of tumor dynamics, but such models are inherently complex and difficult

to develop due to the non-linear nature of tumor growth.

Arguably one of the largest limitations of the clinical trial data is that only control group

data were available for our analyses. This limitation restricts our ability to draw conclu-

sions about the IRR of RECIST 1.1 in the context of active treatment, where the dynamics

of tumor response may differ significantly from those observed in control groups. Future

research should aim to include both control and treatment arms to provide a more com-

prehensive understanding of RECIST 1.1’s reliability across different clinical scenarios.

An additional constraint is that our analyses focused exclusively on the RECIST 1.1 cri-

teria, which may not be the optimal measurement scale for all tumor types. This focus

limits the applicability of our findings to alternative response criteria such as iRECIST (for

immunotherapy) or mRECIST (for hepatocellular carcinoma), which are increasingly used

in specific therapeutic contexts. Our analytical approach could also have been expanded

to include endpoints not addressed in this study. For instance, a meta-analysis similar to

that conducted by Zhang et al. (48) could have been performed specifically for PFS and

DCR, potentially providing additional insights into the IRR of RECIST 1.1 assessments.

This represents a valuable direction for future research that could complement and extend

our current findings.

4.2.2. Analytical Approaches

Our methodological approach to measuring IRR had several inherent limitations. While

Cohen’s 𝜅 and Fleiss’ 𝜅 are widely accepted metrics for assessing agreement between

raters, they do not account for potentially information such as the similarity of different

levels of the outcome measure or the experience level of the raters. Additionally, for some

studies, a continuous measure of IRR such as the intraclass correlation coefficient might

have provided more nuanced insights into agreement patterns. However, we prioritized

methodological consistency across studies, which necessitated using categorical measures

of agreement that could be applied uniformly across the heterogeneous literature.

A further significant methodological challenge in our survival analyses was the use of

Cox regression modeling, which required us to address violations of the independence of

observations assumption. Although we implemented statistical corrections by specifying

clustering of individuals, this approach, which did enable us to compare hazard ratios
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between raters, remains methodologically debatable. Similarly, our analyses of objective

response rates might have benefited from logistic regression modeling, which would have

permitted the estimation of odds ratios and corresponding confidence intervals, poten-

tially offering a more clinically interpretable metric of agreement. However, our primary

focus was on detecting the presence of differences rather than precisely quantifying their

magnitude, which our chosen approach adequately accomplished.

For our analyses of ordinal RECIST data, we acknowledge that more sophisticated ap-

proaches such as ordinal logistic mixed effects models or proportional odds models might

have better accounted for the inherent quasi-ordinality of response classifications. How-

ever, we deliberately employed basic linear mixed effects models as a pragmatic means

to detect differences between rater groups without overcomplicating the analytical frame-

work. This decision was justified by our subsequent time-to-event analyses, which provided

more clinically relevant outcome measures. As noted earlier, tumor growth modeling that

accounts for non-linear growth and decay patterns could have provided deeper insights,

but the development of such models remains challenging due to the biological complexity

and inter-individual variability of tumor dynamics.

A further limitation specific to our sensitivity analyses stems from the constraints inherent

in clinical trial data, where information collection is bounded by patients’ actual clinical

i.e. data is only available up until their participation in the study is discontinued. This

fundamental constraint prevented us from observing the full spectrum of possible tumor

growth and decay patterns as measured by SLD, limiting our ability to comprehensively

characterize the IRR of the RECIST 1.1 tumor measurement scale across all theoretical

threshold values. Particularly relevant to our threshold-modifying approach was the in-

ability to observe how patients who progressed under the standard 20% threshold might

have behaved at higher progression thresholds. Such patients may have required several

additional weeks or months to reach the more extreme thresholds we examined in our

sensitivity analyses. While a tumor growth modeling approach could theoretically address

this limitation by simulating disease trajectories beyond observed timepoints, the con-

siderable heterogeneity in tumor behavior—characterized by non-linear growth patterns

and highly variable individual responses—renders such models exceptionally difficult to

develop and validate. This limitation underscores the inherent challenge in fully exploring

the theoretical boundaries of measurement criteria within the constraints of real-world

clinical data.
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With this breakdown of the overall results and limitations of our study, we can now turn

to the implications of our findings for the future of tumor response assessment in clinical

trials. The next section revisits the broader context of tumor response assessment and

discusses how our results can inform future research and practice in this area, as well as

potential avenues for further investigation.
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The validity and reliability of clinical trial results in oncology fundamentally depend on ac-

curate tumor measurement and consistent assessment of disease response and progression.

Without standardized evaluation criteria, trial outcomes would be subject to substantial

variability, potentially leading to erroneous conclusions about treatment efficacy. RECIST

was developed precisely to address this need, providing a standardized framework for tu-

mor assessment that has been widely adopted in clinical trials globally. Since its initial

introduction in 2000 and subsequent refinement to RECIST 1.1 in 2009, this framework

has become the cornerstone for evaluating therapeutic responses in solid tumor oncology

trials (1).

Despite RECIST 1.1’s widespread adoption and critical importance in drug development,

there has been surprisingly limited systematic research examining its fundamental reli-

ability. Particularly notable is the absence of comprehensive meta-analyses synthesizing

inter-rater reliability (IRR) data across multiple studies and contexts. This knowledge gap

is significant because consistent measurement and interpretation between different raters,

whether at the same institution or across different trial sites, is essential for ensuring that

reported treatment effects reflect genuine biological responses rather than measurement

inconsistencies or subjective interpretations.

That is not to say that no work has been done in this domain; indeed, previous research

has made valuable contributions to our understanding of RECIST reliability, particularly

within the context of clinical trials. For example, Zhang et al. (48) and, more recently,

Jacobs et al. (49) conducted meta-analyses investigating differences between site investi-

gators and central reviewers in several key clinical trial outcome measures. These studies

provide important insights into potential discrepancies in tumor assessments, with an ab-

solutely critical conclusion by Zhang et al. that “statistically inconsistent inferences could

be made in many trials” depending on whether the site investigator or central reviewer

assessments are used (48). However, these studies are limited because the range of trial
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outcomes analyzed is constrained and neither study offers an analysis of equivalence be-

tween rater groups.

An additional critical gap in the literature concerns the empirical impact of RECIST’s

defined threshold values. The 30% decrease threshold for partial response and 20% in-

crease threshold for progressive disease were established based on expert consensus rather

than extensive empirical validation. To date, no comprehensive research has investigated

whether these specific thresholds might systematically influence agreement between raters

or whether alternative thresholds might yield more consistent assessments. This question

is not merely academic as even small changes in these threshold values could potentially

affect trial outcomes and subsequent treatment approvals.

This thesis addresses these important gaps through three complementary analytical ap-

proaches. First, it presents a comprehensive meta-analysis of IRR studies to establish

an overall estimate of RECIST 1.1’s reliability across diverse contexts. Second, it per-

forms a detailed comparison of site investigator versus central reviewer assessments across

multiple clinical trial endpoints, including several not previously examined in the litera-

ture. Finally, it conducts novel sensitivity analyses exploring how variations in the disease

response and progression threshold values might affect the classification consistency of tu-

mor measurements between raters. Together, these analyses provide a more comprehensive

evaluation of RECIST 1.1’s reliability than has previously been available, with important

implications for the interpretation of clinical trial results and potential refinements to the

RECIST framework.

Our meta-analysis reveals that the IRR of the RECIST 1.1 criteria demonstrates sub-

stantial agreement between raters, with a pooled Cohen’s and Fleiss’ 𝜅 estimate of 0.66.

According to the widely accepted Landis and Koch interpretive scale (77), this value indi-

cates substantial agreement, suggesting that RECIST 1.1 provides reasonably consistent

tumor assessments across different evaluators. However, this level of agreement, while en-

couraging, still leaves room for improvement in measurement consistency especially when

considering how clearly defined the RECIST criteria are. Of particular concern is a notable

pattern in our data: the four clinical trial studies included in our meta-analysis consis-

tently show lower IRR values compared to studies conducted in non-clinical trial settings.

This finding raises important questions about whether RECIST 1.1 reliability may be

context-dependent, with potentially lower consistency in the high-stakes environment of

clinical trials where diverse specialists (oncologists and radiologists) may be evaluating the
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same images with different training backgrounds. With more data on RECIST reliability

in clinical trial contexts, this observation could be more deeply investigated to determine

whether specific factors contribute to the observed variability such as compounding dis-

crepancies due to serial assessments of the same patients.

From a methodological perspective, we also contribute to the statistical foundations of 𝜅
analysis by developing a more mathematically rigorous approach for scaling 𝜅 values to

logit values using the delta method. This methodological advancement extends previous

work that assumed 𝜅 values were bounded to the interval [0, 1], clarifying that the full

theoretical range of 𝜅 is [-1, 1]. While in most practical RECIST applications we ex-

pect positive agreement values, our method provides a more statistically sound framework

for meta-analytic comparisons that may encounter unusual cases of systematic disagree-

ment.

To further examine RECIST reliability exclusively within clinical trial contexts, we con-

ducted detailed comparisons between site investigator and central reviewer response as-

sessments. Although there are detectable differences in ORR determinations in some cases,

the direction and magnitude of these differences vary inconsistently across studies and may

be an artefact of a small sample of response to treatment within the trials. More tellingly,

an analysis of pairwise IRR between site investigators and central reviewers reveals a

broad range of 𝜅 values, indicating variability in agreement. Notably, in two of the three

clinical trials we examined, the pairwise 𝜅 values between site investigators and central

reviewers are lower than those between different central reviewers. This pattern suggests

a systematic tendency for greater consistency among specialized central reviewers than

between site investigators and central review teams although the sample size is small and

the results should be interpreted with caution. This finding highlights the potential value

of central review processes in enhancing measurement reliability, particularly in complex

clinical trial settings where multiple raters may interpret tumor images differently.

To determine whether observed differences in tumor classification have meaningful clini-

cal implications, we modeled time-to-event outcomes using Cox regression models. Our

analysis of TTP, TTR, and DoR yields particularly informative results. No significant

differences in hazard ratios are detected between site investigators and central reviewers

across these critical endpoints. More definitively, using two one-sided tests (TOST) for

equivalence, we demonstrate statistical equivalence between site investigators and central

reviewers for both TTP and TTR outcomes. Although equivalence could not be estab-
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lished for DoR, the point estimates are similar, suggesting that the inability to confirm

equivalence likely stems from limited sample sizes and wider confidence intervals rather

than potential clinical differences.

These time-to-event findings align with previous research by Zhang et al. (48) showing

general concordance between rater groups for primary trial endpoints. However, our results

also confirm an important nuance: while average agreement across multiple trials appears

to be consistent, individual trials can exhibit meaningful discrepancies between site and

central assessments. Such trial-specific variations, though statistically expected in some

proportion of studies, can have profound implications for the interpretation of results

and the determination of treatment efficacy (48). This observation lends support to the

continued practice of BICR in clinical trials to ensure data quality.

Our sensitivity analysis of the RECIST 1.1 threshold values confirms the stability of cur-

rent standards as the established disease response (30% decrease) and progression (20%

increase) thresholds appeared to be robust across testing. That is, when we vary these

thresholds within clinically reasonable ranges, we find no substantial effects on classifica-

tion consistency or inter-rater agreement, and we only observed large deviations in agree-

ment between raters at the extremes of classification thresholds. This indicates that the

consensus-derived RECIST thresholds are appropriate and stable across different clinical

contexts and rater groups. However, this analysis is limited by available data, particularly

for extreme threshold values, because this clinical trial data only includes patients up until

the point of disease progression, and therefore we cannot assess the full range of RECIST

classifications. Future research could explore the effects of more extreme threshold val-

ues on classification consistency, particularly in trials involving treatments that may not

produce the expected tumor shrinkage or growth patterns, and this could potentially be

accomplished through simulation studies or additional empirical data collection.

The collective evidence from our three analytical approaches supports several important

conclusions about RECIST 1.1 reliability. First, RECIST 1.1 demonstrates substantial

overall reliability as reflected in good 𝜅 values, though with room for improvement, par-

ticularly in clinical trial settings where we observed consistently lower agreement. Second,

differences between site investigators and central reviewers, while present, generally do

not translate into clinically meaningful differences in trial endpoints, with the important

caveat that individual trials may still exhibit consequential discrepancies. Third, the cur-

rent RECIST threshold values appear empirically justified, showing stability across various
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analytical conditions.

It is important to recognize that this study hardly acknowledges a broader contextual

issue regarding the type of treatment received and the relevance of RECIST criteria to

different treatment methodologies; RECIST was originally developed when chemother-

apy (cytotoxic treatments) and surgical interventions represented the primary available

options, and the expected response pattern (i.e. apoptosis and clearing of dead cells) as

a result of chemotherapy meant that measuring tumor growth or decline could be as-

sumed as an adequate proxy for disease response (2,68,69). However, the contemporary

therapeutic landscape has evolved dramatically, introducing treatment modalities that

may not necessarily produce the tumor shrinkage that RECIST was designed to detect

(21). This study alone examines trials involving cytotoxic, cytostatic, and immunotherapy

treatment modalities (Table 2.1), representing only three of the apparent seven “pillars

of cancer therapy,” which also include surgery, radiotherapy, hormonal therapy, and cell

therapy (69). Cytostatic agents, for example, work by halting tumor growth rather than

causing regression, while immunotherapies may initially cause tumor swelling due to im-

mune cell infiltration before any reduction occurs (69). Therefore, one might reasonably

expect differential utility of RECIST depending on the treatment type, with potentially

decreasing utility as cytostatic and immunotherapies become more prevalent in clinical

practice, given that these treatments may achieve therapeutic benefit without the measur-

able tumor shrinkage that RECIST criteria prioritize. Future studies should explore how

RECIST 1.1 performs across these diverse treatment modalities, particularly in the con-

text of immunotherapies and other novel approaches that may not conform to traditional

tumor response patterns.

Furthermore, RECIST may soon face competition from emerging technological approaches,

including software that can automatically segment tumors (42,108) and three-dimensional

methods that might better assess overall tumor burden (109). In effect, the employment

of these advanced techniques could potentially replace the need for human raters in some

contexts, thereby enhancing measurement consistency and reducing variability. However,

these innovations also raise important questions about how to integrate new technologies

with existing frameworks like RECIST 1.1, particularly regarding the interpretation of

results and the establishment of new standards for tumor assessment. While we intention-

ally focused our analysis on the reliability of current RECIST 1.1 criteria to avoid diluting

the primary aims of this thesis, these broader considerations will require careful attention

in future research as the tumor assessment landscape continues to evolve.
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Looking forward, our findings suggest several promising directions for improving RE-

CIST implementation. A particularly valuable approach would be to explore collabo-

rative methodologies for tumor identification at baseline, as demonstrated by Oubel et

al. (44), involving enhanced coordination between site investigators and central review-

ers. This strategy could directly address the observed trend of lower inter-rater reliabil-

ity in clinical trial settings by establishing shared understanding of target lesions from

the outset of treatment. By developing standardized protocols for collaborative baseline

assessments, the oncology research community could potentially enhance measurement

consistency throughout the treatment course, further strengthening the reliability of this

critical evaluation framework.

Such methodological innovations would complement RECIST’s solid foundation while ad-

dressing the specific contexts where our research identified opportunities for improvement.

As cancer therapeutics continue to advance and diversify, maintaining and enhancing the

reliability of response assessment tools like RECIST 1.1 remains essential for generating

valid and generalizable clinical trial results. And despite the introduction of competing

assessment frameworks, RECIST 1.1 remains the gold standard for tumor response evalua-

tion in oncology trials, with its rigorous methodology and established reliability continuing

to underpin the development of new cancer treatments.
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A. Figures

A.1. IRR Analyses

(a) Fleiss’ kappa results

(b) Fleiss’ kappa funnel plot

Figure A.1.: Fleiss’ kappa results and funnel plot for the inter-rater reliability (IRR) meta-
analysis.
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(a) Cohen’s kappa results

(b) Cohen’s kappa funnel plot

Figure A.2.: Cohen’s kappa results and funnel plot for the inter-rater reliability (IRR)
meta-analysis.
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A.2. Trial Results

A.2.1. Overall Agreement

A.2.1.1. Estimated Marginal Means (EMMs)
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A
PPEN

D
IX

A
.

FIG
U

R
ES

R
EC

IST
1.1

A
nalysis

Study Contrast Estimate SE df t.ratio p.value

NCT02395172 Site Inv. - Reader 1 -0.0180 0.0372 2613.316 -0.4836 0.8791

NCT02395172 Site Inv. - Reader 2 0.0371 0.0372 2617.056 0.9983 0.578

NCT02395172 Reader 1 - Reader 2 0.0551 0.0373 2626.392 1.4773 0.302

NCT03434379 Site Inv. - Reader 1 0.0519 0.0621 1262.717 0.8352 0.6812

NCT03434379 Site Inv. - Reader 2 0.0579 0.0622 1262.846 0.9302 0.6213

NCT03434379 Reader 1 - Reader 2 0.0060 0.0614 1259.941 0.0972 0.9948

NCT03631706 Site Inv. - Reader 1 0.2284 0.0406 2507.766 5.6305 0∗∗∗

NCT03631706 Site Inv. - Reader 2 0.0644 0.0406 2507.789 1.5859 0.2519

NCT03631706 Reader 1 - Reader 2 -0.1640 0.0424 2501.910 -3.8645 3e-04∗∗∗

Table A.1.: Estimated marginal means (EMMs) between all raters for the objective response rate (ORR) analyses
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A.2.1.2. LME Equations

̂RSSTRESC𝑖 ∼ 𝑁 (2.51𝛼𝑗[𝑖]
+ 0.02𝛽1

(RSEVALIDREADER 1) − 0.04𝛽2
(RSEVALIDREADER 2), 𝜎2)

𝛼𝑗 ∼ 𝑁 (0, 0.73) , for USUBJID j = 1, … ,J
(A.1)

Equation: Estimated marginal means for the objective response rate (ORR) for study

NCT02395172.

̂RSSTRESC𝑖 ∼ 𝑁 (2.34𝛼𝑗[𝑖]
− 0.05𝛽1

(RSEVALIDREADER 1) − 0.06𝛽2
(RSEVALIDREADER 2), 𝜎2)

𝛼𝑗 ∼ 𝑁 (0, 0.54) , for USUBJID j = 1, … ,J
(A.2)

Equation: Estimated marginal means for the objective response rate (ORR) for study

NCT03434379.

̂RSSTRESC𝑖 ∼ 𝑁 (2.98𝛼𝑗[𝑖]
− 0.23𝛽1

(RSEVALIDREADER 1) − 0.06𝛽2
(RSEVALIDREADER 2), 𝜎2)

𝛼𝑗 ∼ 𝑁 (0, 0.89) , for USUBJID j = 1, … ,J
(A.3)

Equation: Estimated marginal means for the objective response rate (ORR) for study

NCT03631706.
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A.2.2. Objective Response Rate Results

A.2.2.1. McNemar’s Tests

$reader1_reader2

READER 2

READER 1 FALSE TRUE

FALSE 253 18

TRUE 19 37

$reader1_site

SITE INVESTIGATOR

READER 1 FALSE TRUE

FALSE 259 13

TRUE 14 42

$reader2_site

SITE INVESTIGATOR

READER 2 FALSE TRUE

FALSE 268 5

TRUE 5 50

Table A.2.: Contingency tables for the McNemar’s tests study NCT02395172.
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$reader1_reader2

READER 2

READER 1 FALSE TRUE

FALSE 100 11

TRUE 7 10

$reader1_site

SITE INVESTIGATOR

READER 1 FALSE TRUE

FALSE 106 5

TRUE 11 6

$reader2_site

SITE INVESTIGATOR

READER 2 FALSE TRUE

FALSE 105 2

TRUE 12 9

Table A.3.: Contingency tables for the McNemar’s tests study NCT03434379.
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$reader1_reader2

READER 2

READER 1 FALSE TRUE

FALSE 62 9

TRUE 9 66

$reader1_site

SITE INVESTIGATOR

READER 1 FALSE TRUE

FALSE 55 16

TRUE 3 72

$reader2_site

SITE INVESTIGATOR

READER 2 FALSE TRUE

FALSE 55 16

TRUE 3 72

Table A.4.: Contingency tables for the McNemar’s tests study NCT03631706.
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A.2.3. Survival Analyses
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A.2.3.1. Time to Progression (TTP) Analyses

A.2.3.1.1. NCT02395172

Figure A.3.: Kaplan-Meier survival plot for time to progression (TTP) for study
NCT02395172.

Figure A.4.: Log-minus-log survival plot for time to progression (TTP) for study
NCT02395172.
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Figure A.5.: Schoenfeld residuals for the Cox proportional hazards model for time to pro-
gression (TTP) for study NCT02395172.

A.2.3.1.2. NCT03434379

Figure A.6.: Kaplan-Meier survival plot for time to progression (TTP) for study
NCT03434379.
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Figure A.7.: Log-minus-log survival plot for time to progression (TTP) for study
NCT03434379.

Figure A.8.: Schoenfeld residuals for the Cox proportional hazards model for time to pro-
gression (TTP) for study NCT03434379.

A.2.3.1.3. NCT03631706
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Figure A.9.: Kaplan-Meier survival plot for time to progression (TTP) for study
NCT03631706.

Figure A.10.: Log-minus-log survival plot for time to progression (TTP) for study
NCT03631706.
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Figure A.11.: Schoenfeld residuals for the Cox proportional hazards model for time to
progression (TTP) for study NCT03631706.
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A.2.3.2. Time to Response (TTR) Analyses

A.2.3.2.1. NCT02395172

Figure A.12.: Kaplan-Meier survival plot for time to response (TTR) for study
NCT02395172.

Figure A.13.: Log-minus-log survival plot for time to response (TTR) for study
NCT02395172.
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Figure A.14.: Schoenfeld residuals for the Cox proportional hazards model for time to
response (TTR) for study NCT02395172.

A.2.3.2.2. NCT03434379

Figure A.15.: Kaplan-Meier survival plot for time to response (TTR) for study
NCT03434379.
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Figure A.16.: Log-minus-log survival plot for time to response (TTR) for study
NCT03434379.

Figure A.17.: Schoenfeld residuals for the Cox proportional hazards model for time to
response (TTR) for study NCT03434379.

A.2.3.2.3. NCT03631706
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Figure A.18.: Kaplan-Meier survival plot for time to response (TTR) for study
NCT03631706.

Figure A.19.: Log-minus-log survival plot for time to response (TTR) for study
NCT03631706.
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Figure A.20.: Schoenfeld residuals for the Cox proportional hazards model for time to
response (TTR) for study NCT03631706.
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A.2.3.3. Duration of Response (DoR) Analyses

A.2.3.3.1. NCT02395172

Figure A.21.: Kaplan-Meier survival plot for duration of response (DoR) for study
NCT02395172.

Figure A.22.: Log-minus-log survival plot for duration of response (DoR) for study
NCT02395172.
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Figure A.23.: Schoenfeld residuals for the Cox proportional hazards model for duration of
response (DoR) for study NCT02395172.

A.2.3.3.2. NCT03434379

Figure A.24.: Kaplan-Meier survival plot for duration of response (DoR) for study
NCT03434379.
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Figure A.25.: Log-minus-log survival plot for duration of response (DoR) for study
NCT03434379.

Figure A.26.: Schoenfeld residuals for the Cox proportional hazards model for duration of
response (DoR) for study NCT03434379.

A.2.3.3.3. NCT03631706
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Figure A.27.: Kaplan-Meier survival plot for duration of response (DoR) for study
NCT03631706.

Figure A.28.: Log-minus-log survival plot for duration of response (DoR) for study
NCT03631706.
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Figure A.29.: Schoenfeld residuals for the Cox proportional hazards model for duration of
response (DoR) for study NCT03631706.

A.2.4. Time-to-Event Meta-Analyses

Figure A.30.: Forest plot of hazard ratios for TTP from the meta-analysis of time to event
outcomes
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Figure A.31.: Funnel plot of hazard ratios for TTR from the meta-analysis of time to event
outcomes

Figure A.32.: Funnel plot of hazard ratios for DOR from the meta-analysis of time to event
outcomes
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A.3. Sensitivity Analyses
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NCT03434379

NCT02395172

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Disease Progression Threshold

P
ar

tia
l R

es
po

ns
e 

T
hr

es
ho

ld

Delta from
Reference

−30

−20

−10

0

10

Site Investigator vs. Averaged Central Reviewer
Duration of Response: Sensitivity of RECIST in Reviewer Hazard Ratio Differences

Figure A.33.: Heatmap of Change in Differences between Raters for DoR across RECIST
thresholds, unfiltered data
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NCT03631706

NCT03434379

NCT02395172

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Disease Progression Threshold

P
ar

tia
l R

es
po

ns
e 

T
hr

es
ho

ld

Delta from
Reference

−10

0

10

Site Investigator vs. Averaged Central Reviewer
Time to Response: Sensitivity of RECIST in Reviewer Hazard Ratio Differences

Figure A.34.: Heatmap of Change in Differences between Raters for TTR across RECIST
thresholds, unfiltered data
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B. Code

Due to the length of the code required to reproduce the analyses in this thesis, the code

is not included in the PDF output of this document. Instead, the code is available in the

following locations:

1. In the USB drives that were provided with the thesis.

2. In the online version of the thesis:

a. The readable version is available at neuroshepherd.github.io/masters-thesis

b. And underlying code for this site is thus available at github.com/neuroshepherd/masters-

thesis

The code in this appendix is intended to be for proof of work. As such, many of the

file paths in the appendix are relative to “missing” directories or have been redacted for

privacy reasons, and original, patient-level data files are not included here. Estimates from

simulations and some other components that are not dependent on the original data files

are included in the data directory of the online repository.
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C. Curriculum Vitae

Error in normalizePath(path, mustWork = TRUE) :

path[1]="../cv/Patrick Callahan CV July 2025.pdf": No such file or directory

Error in knitr::include_graphics("../cv/cv_page_1.pdf") :

Cannot find the file(s): "../cv/cv_page_1.pdf"

167



RECIST 1.1 Analysis APPENDIX C. CURRICULUM VITAE

Error in knitr::include_graphics("../cv/cv_page_2.pdf") :

Cannot find the file(s): "../cv/cv_page_2.pdf"
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D. Contributions

Effort

Individual

Contribu-

tion Contributions by others (who, what, how much)

Conception 20% Original questions/hypotheses around the reliability and

sensitivity of the RECIST scale were posited by

Dr. Ursula-Kunz. PC followed up with more specific

questions and analyses.

Field Work 100% Data for meta-analyses were collected by PC. Data from

clinical trials was already available through a partner

company, Transcelerate™.

Data

Evaluation

100% All analyses were planned and performed by PC as well as

the production of tables and figures.

Manuscript 95% Dr. Ursula-Kunz provided feedback on sections of the

thesis. Mostafa Nasr also provided feedback on drafts.
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Elements of skeleton code for this thesis were generated using ChatGPT 4.1 and Claude

Sonnet 3.7. The text of this thesis was likewise edited with the assistance of these AI tools,

which provided suggestions and improvements to writing style throughout the writing

process. All analyses and interpretations performed in this thesis, however, are my own.

I have written this thesis on my own without any other resources than those specified.

The electronic and printed versions of this thesis are identical in terms of content, but

formatting may differ. I have not submitted this thesis nor any part of it in any other

examination procedure.

Printed Name

Signature Date and Location
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