References

Authors
Affiliation
1.
Baumann N. How to use the medical subject headings (MeSH). International Journal of Clinical Practice [Internet]. 2016;70(2):171–4. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/ijcp.12767
2.
Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). European Journal of Cancer [Internet]. 2009 Jan 1;45(2):228–47. Available from: https://www.ejcancer.com/article/S0959-8049(08)00873-3/fulltext
3.
Yin PT, Desmond J, Day J. Sharing Historical Trial Data to Accelerate Clinical Development. Clinical Pharmacology & Therapeutics [Internet]. 2019 Sep 20;106(6):1177–8. Available from: http://dx.doi.org/10.1002/cpt.1608
4.
Gill D. Re-inventing clinical trials through TransCelerate. Nature Reviews Drug Discovery [Internet]. 2014 Nov;13(11):787–8. Available from: https://www.nature.com/articles/nrd4437
5.
Ide NC, Loane RF, Demner-Fushman D. Essie: A concept-based search engine for structured biomedical text. Journal of the American Medical Informatics Association : JAMIA [Internet]. 2007;14(3):253–63. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2244877/
6.
Lencioni R, Llovet J. Modified RECIST (mRECIST) Assessment for Hepatocellular Carcinoma. Seminars in Liver Disease [Internet]. 2010 Feb;30(01):052–60. Available from: http://www.thieme-connect.de/DOI/DOI?10.1055/s-0030-1247132
7.
Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, et al. iRECIST: Guidelines for response criteria for use in trials testing immunotherapeutics. The Lancet Oncology [Internet]. 2017 Mar;18(3):e143–52. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5648544/
8.
ClinicalTrials.gov API | ClinicalTrials.gov v2.0.3 [Internet]. 2025. Available from: https://clinicaltrials.gov/data-api/api
9.
Ide NC, Loane RF, Demner-Fushman D. Essie: A concept-based search engine for structured biomedical text. Journal of the American Medical Informatics Association : JAMIA [Internet]. 2007;14(3):253–63. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2244877/
10.
Gill D. Re-inventing clinical trials through TransCelerate. Nature Reviews Drug Discovery [Internet]. 2014 Nov;13(11):787–8. Available from: https://www.nature.com/articles/nrd4437
11.
Tumor/Lesion Identification & Results | CDISC [Internet]. Available from: https://www.cdisc.org/kb/ecrf/tumorlesion-identification-results
12.
Oncology Disease Response (RS) Supplements | CDISC [Internet]. Available from: https://www.cdisc.org/kb/articles/cdisc-published/oncology-disease-response-rs-supplements
13.
Wolff F, Gering V. The oncology specific domains TU, TS and RS: What to know as a statistical analyst. 2018;
14.
SDTM [Internet]. 2024. Available from: https://www.cdisc.org/standards/foundational/sdtm
15.
Fleiss JL. Measuring nominal scale agreement among many raters. Psychological Bulletin. 1971;76(5):378–82.
16.
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics [Internet]. 1977;33(1):159–74. Available from: https://www.jstor.org/stable/2529310
17.
Irr: Various coefficients of interrater reliability and agreement [Internet]. The R Foundation; 2005. Available from: http://dx.doi.org/10.32614/CRAN.package.irr
18.
Viechtbauer W. Metafor: Meta-analysis package for r [Internet]. The R Foundation; 2009. Available from: http://dx.doi.org/10.32614/CRAN.package.metafor
19.
Gwet KL. Large-sample variance of fleiss generalized kappa. Educational and Psychological Measurement [Internet]. 2021 Aug;81(4):781–90. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8243202/
20.
McHugh ML. Interrater reliability: The kappa statistic. Biochemia Medica [Internet]. 2012 Oct 15;22(3):276–82. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900052/
21.
Carpentier M, Combescure C, Merlini L, Perneger TV. Kappa statistic to measure agreement beyond chance in free-response assessments. BMC Medical Research Methodology [Internet]. 2017 Apr 19;17(1):62. Available from: https://doi.org/10.1186/s12874-017-0340-6
22.
Bradburn MJ, Clark TG, Love SB, Altman DG. Survival analysis part II: Multivariate data analysis an introduction to concepts and methods. British Journal of Cancer [Internet]. 2003 Aug 4;89(3):431–6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2394368/
23.
Clark TG, Bradburn MJ, Love SB, Altman DG. Survival Analysis Part I: Basic concepts and first analyses. British Journal of Cancer [Internet]. 2003 Jul;89(2):232–8. Available from: https://www.nature.com/articles/6601118
24.
Bradburn MJ, Clark TG, Love SB, Altman DG. Survival Analysis Part III: Multivariate data analysis choosing a model and assessing its adequacy and fit. British Journal of Cancer [Internet]. 2003 Aug;89(4):605–11. Available from: https://www.nature.com/articles/6601120
25.
Therneau TM. Survival: Survival analysis [Internet]. The R Foundation; 2001. Available from: http://dx.doi.org/10.32614/CRAN.package.survival
26.
Lenth RV. Emmeans: Estimated marginal means, aka least-squares means [Internet]. The R Foundation; 2017. Available from: http://dx.doi.org/10.32614/CRAN.package.emmeans
27.
Wickham H, Chang W, Henry L, Pedersen TL, Takahashi K, Wilke C, et al. ggplot2: Create elegant data visualisations using the grammar of graphics [Internet]. The R Foundation; 2007. Available from: http://dx.doi.org/10.32614/CRAN.package.ggplot2
28.
Zhang J, Zhang Y, Tang S, Jiang L, He Q, Hamblin LT, et al. Systematic bias between blinded independent central review and local assessment: Literature review and analyses of 76 phase III randomised controlled trials in 45 688 patients with advanced solid tumour. BMJ Open [Internet]. 2018 Sep 10;8(9):e017240. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6144327/
29.
Jacobs F, Molinelli C, Martins-Branco D, Marta GN, Salmon M, Ameye L, et al. Progression-free survival assessment by local investigators versus blinded independent central review in randomized clinical trials in metastatic breast cancer: A systematic review and meta-analysis. European Journal of Cancer [Internet]. 2024 Jan 1;197:113478. Available from: https://www.sciencedirect.com/science/article/pii/S0959804923007803
30.
Haddaway NR, Page MJ, Pritchard CC, McGuinness LA. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Systematic Reviews [Internet]. 2022 Mar 27;18(2). Available from: http://dx.doi.org/10.1002/cl2.1230
31.
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ [Internet]. 2021 Mar 29;n71. Available from: http://dx.doi.org/10.1136/bmj.n71
32.
El Homsi M, Bou Ayache J, Fernandes MC, Horvat N, Kim TH, LaGratta M, et al. Comparison of abbreviated and complete MRI protocols for treatment response assessment of colorectal liver metastases. European Radiology [Internet]. 2024 Dec 10; Available from: https://doi.org/10.1007/s00330-024-11277-3
33.
Aghighi M, Boe J, Rosenberg J, Von Eyben R, Gawande RS, Petit P, et al. Three-dimensional radiologic assessment of chemotherapy response in ewing sarcoma can be used to predict clinical outcome. Radiology [Internet]. 2016 Sep;280(3):905–15. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5006736/
34.
Felsch M, Zaim S, Dicken V, Lehmacher W, Scheuring UJ. Comparison of central and local serial CT assessments of metastatic renal cell carcinoma patients in a clinical phase IIB study. Acta Radiologica [Internet]. 2017 Feb 1;58(2):249–55. Available from: https://doi.org/10.1177/0284185116642634
35.
Ghobrial FEI, Eldin MS, Razek AAKA, Atwan NI, Shamaa SSA. Computed tomography assessment of hepatic metastases of breast cancer with revised response evaluation criteria in solid tumors (RECIST) criteria (version 1.1): Inter-observer agreement. Polish Journal of Radiology [Internet]. 2017 Oct 20;82:593–7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5894063/
36.
Ghosn M, Derbel H, Kharrat R, Oubaya N, Mulé S, Chalaye J, et al. Prediction of overall survival in patients with hepatocellular carcinoma treated with y-90 radioembolization by imaging response criteria. Diagnostic and Interventional Imaging [Internet]. 2021 Jan 1;102(1):35–44. Available from: https://www.sciencedirect.com/science/article/pii/S2211568420302217
37.
Karmakar A, Kumtakar A, Sehgal H, Kumar S, Kalyanpur A. Interobserver Variation in Response Evaluation Criteria in Solid Tumors 1.1. Academic Radiology. 2019 Apr;26(4):489–501.
38.
Kuhl CK, Alparslan Y, Schmoee J, Sequeira B, Keulers A, Brümmendorf TH, et al. Validity of RECIST Version 1.1 for Response Assessment in Metastatic Cancer: A Prospective, Multireader Study. Radiology. 2019 Feb;290(2):349–56.
39.
Oubel E, Bonnard E, Sueoka-Aragane N, Kobayashi N, Charbonnier C, Yamamichi J, et al. Volume-based response evaluation with consensual lesion selection: A pilot study by using cloud solutions and comparison to RECIST 1.1. Academic Radiology [Internet]. 2015 Feb 1;22(2):217–25. Available from: https://www.sciencedirect.com/science/article/pii/S1076633214003729
40.
Tovoli F, Renzulli M, Negrini G, Brocchi S, Ferrarini A, Andreone A, et al. Inter-operator variability and source of errors in tumour response assessment for hepatocellular carcinoma treated with sorafenib. European Radiology [Internet]. 2018 Sep 1;28(9):3611–20. Available from: https://doi.org/10.1007/s00330-018-5393-3
41.
Zimmermann M, Kuhl CK, Engelke H, Bettermann G, Keil S. CT-based whole-body tumor volumetry versus RECIST 1.1: Feasibility and implications for inter-reader variability. European Journal of Radiology [Internet]. 2021 Feb 1;135:109514. Available from: https://www.sciencedirect.com/science/article/pii/S0720048X2030704X
42.
Sterne JAC, Egger M. Funnel plots for detecting bias in meta-analysis: Guidelines on choice of axis. Journal of Clinical Epidemiology [Internet]. 2001 Oct 1;54(10):1046–55. Available from: https://www.jclinepi.com/article/S0895-4356(01)00377-8/fulltext
43.
Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ [Internet]. 1997 Sep 13;315(7109):629–34. Available from: https://www.bmj.com/content/315/7109/629
44.
Cochrane handbook for systematic reviews of interventions version 6.4 (updated august 2023). Cochrane, 2023 [Internet]. 2023. Available from: https://www.cochrane.org/authors/handbooks-and-manuals/handbook/current/chapter-13#section-13-3-5-6
45.
Oehlert GW. A note on the delta method. The American Statistician [Internet]. 1992 Feb 1;46(1):27–9. Available from: https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475842
46.
Muche R. Applied survival analysis: Regression modeling of time to event data.: DW hosmer, jr., s lemeshow. New york: John wiley, 1999, pp.386, US$89.95. ISBN: 0-471-15410-5. International Journal of Epidemiology [Internet]. 2001 Apr 1;30(2):408–9. Available from: https://doi.org/10.1093/ije/30.2.408
47.
Cohen J. A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement [Internet]. 1960 Apr;20(1):37–46. Available from: http://dx.doi.org/10.1177/001316446002000104
48.
Cochran WG. The comparison of percentages in matched samples. Biometrika [Internet]. 1950;37(3/4):256–66. Available from: https://www.jstor.org/stable/2332378
49.
West SL, Gartlehner G, Mansfield AJ, Poole C, Tant E, Lenfestey N, et al. Table 7, Summary of common statistical approaches to test for heterogeneity [Internet]. 2010. Available from: https://www.ncbi.nlm.nih.gov/books/NBK53317/table/ch3.t2/
50.
Sundjaja JH, Shrestha R, Krishan K. McNemar And Mann-Whitney U Tests. In Treasure Island (FL): StatPearls Publishing; 2025. Available from: http://www.ncbi.nlm.nih.gov/books/NBK560699/
51.
Lakens D, Caldwell A. TOSTER: Two one-sided tests (TOST) equivalence testing [Internet]. The R Foundation; 2016. Available from: http://dx.doi.org/10.32614/CRAN.package.TOSTER
52.
Lakens D. Equivalence tests. Social Psychological and Personality Science [Internet]. 2017 May;8(4):355–62. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5502906/
53.
Phillips KF. Power of the two one-sided tests procedure in bioequivalence. Journal of Pharmacokinetics and Biopharmaceutics [Internet]. 1990 Apr 1;18(2):137–44. Available from: https://doi.org/10.1007/BF01063556
54.
Treadwell JR. Methods Project 1: Existing Guidance for Individual Trials. In Agency for Healthcare Research; Quality (US); 2012. Available from: https://www.ncbi.nlm.nih.gov/books/NBK98984/
55.
56.
Cox DR. Regression models and life-tables. Journal of the Royal Statistical Society Series B (Methodological) [Internet]. 1972;34(2):187–220. Available from: https://www.jstor.org/stable/2985181
57.
Bland JM, Altman DG. The logrank test. BMJ : British Medical Journal [Internet]. 2004 May 1;328(7447):1073. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC403858/
58.
Mantel N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemotherapy Reports. 1966 Mar;50(3):163–70.
59.
Ogundimu EO. Adequate sample size for developing prediction models is not simply related to events per variable. Journal of Clinical Epidemiology. 2016;
60.
Anttila JV, Shubin M, Cairns J, Borse F, Guo Q, Mononen T, et al. Contrasting the impact of cytotoxic and cytostatic drug therapies on tumour progression. PLoS Computational Biology [Internet]. 2019 Nov 18;15(11):e1007493. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6886869/
61.
Bailly C, Thuru X, Quesnel B. Combined cytotoxic chemotherapy and immunotherapy of cancer: Modern times. NAR Cancer [Internet]. 2020 Feb 17;2(1):zcaa002. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8209987/
62.
Wulff AM, Fabel M, Freitag-Wolf S, Tepper M, Knabe HM, Schäfer JP, et al. Volumetric response classification in metastatic solid tumors on MSCT: Initial results in a whole-body setting. European Journal of Radiology [Internet]. 2013 Oct 1;82(10):e567–73. Available from: https://www.ejradiology.com/article/S0720-048X(13)00284-2/fulltext
63.
Baidya Kayal E, Kandasamy D, Yadav R, Bakhshi S, Sharma R, Mehndiratta A. Automatic segmentation and RECIST score evaluation in osteosarcoma using diffusion MRI: A computer aided system process. European Journal of Radiology. 2020 Dec;133:109359.
64.
Mozley PD, Bendtsen C, Zhao B, Schwartz LH, Thorn M, Rong Y, et al. Measurement of tumor volumes improves RECIST-based response assessments in advanced lung cancer. Translational Oncology [Internet]. 2012 Feb 1;5(1):19–25. Available from: https://www.sciencedirect.com/science/article/pii/S1936523312800568
65.
Are key funders of cancer research slowing down their spending? [Internet]. 2025. Available from: https://www.nature.com/nature-index/news/funding-cancer-research-grant-trends-investment
66.
Cooper GM. The Development and Causes of Cancer. In Sinauer Associates; 2000. Available from: https://www.ncbi.nlm.nih.gov/books/NBK9963/
67.
Wainwright EN, Scaffidi P. Epigenetics and cancer stem cells: Unleashing, hijacking, and restricting cellular plasticity. Trends in Cancer [Internet]. 2017 May;3(5):372–86. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5506260/
68.
Gerstberger S, Jiang Q, Ganesh K. Metastasis. Cell [Internet]. 2023 Apr 13;186(8):1564–79. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511214/
69.
Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduction and Targeted Therapy [Internet]. 2020 Mar 12;5(1):28. Available from: https://www.nature.com/articles/s41392-020-0134-x
70.
Gavish A, Tyler M, Simkin D, Kovarsky D, Castro LNG, Halder D, et al. The transcriptional hallmarks of intra-tumor heterogeneity across a thousand tumors.
71.
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians [Internet]. 2024;74(3):229–63. Available from: https://onlinelibrary.wiley.com/doi/abs/10.3322/caac.21834
72.
Ma Z, Richardson LC. Cancer screening prevalence and associated factors among US adults. Preventing Chronic Disease [Internet]. 2022 Apr 21;19:E22. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044902/
73.
Zubrod CG, Schneiderman M, Frei E, Brindley C, Lennard Gold G, Shnider B, et al. Appraisal of methods for the study of chemotherapy of cancer in man: Comparative therapeutic trial of nitrogen mustard and triethylene thiophosphoramide. Journal of Chronic Diseases [Internet]. 1960 Jan 1;11(1):7–33. Available from: https://www.sciencedirect.com/science/article/pii/0021968160901375
74.
Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: Evolving Considerations for PET Response Criteria in Solid Tumors. Journal of nuclear medicine : official publication, Society of Nuclear Medicine [Internet]. 2009 May;50(Suppl 1):122S. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC2755245/
75.
Choi JH, Ahn MJ, Rhim HC, Kim JW, Lee GH, Lee YY, et al. Comparison of WHO and RECIST Criteria for Response in Metastatic Colorectal Carcinoma. Cancer Research and Treatment : Official Journal of Korean Cancer Association [Internet]. 2005 Oct 31;37(5):290. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC2785927/
76.
Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. JNCI: Journal of the National Cancer Institute [Internet]. 2000 Feb 2;92(3):205–16. Available from: https://doi.org/10.1093/jnci/92.3.205
77.
Food, Drug Administration C for DE and. Clinical Trial Endpoints for the Approval of Cancer Drugs and Biologics [Internet]. 2018. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/clinical-trial-endpoints-approval-cancer-drugs-and-biologics
78.
European Medicines Agency. Guideline on the clinical evaluation of anticancer medicinal products. 2023 Nov 18; Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-clinical-evaluation-anticancer-medicinal-products-revision-6_en.pdf
79.
Ruchalski K, Braschi-Amirfarzan M, Douek M, Sai V, Gutierrez A, Dewan R, et al. A primer on RECIST 1.1 for oncologic imaging in clinical drug trials. Radiology: Imaging Cancer [Internet]. 2021 May 14;3(3):e210008. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8183261/
80.
Abramson RG, McGhee CR, Lakomkin N, Arteaga CL. Pitfalls in RECIST data extraction for clinical trials: Beyond the basics. Academic radiology [Internet]. 2015 Jun;22(6):779–86. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429002/
81.
Beaumont H, Evans TL, Klifa C, Guermazi A, Hong SR, Chadjaa M, et al. Discrepancies of assessments in a RECIST 1.1 phase II clinical trial association between adjudication rate and variability in images and tumors selection. Cancer Imaging [Internet]. 2018 Dec 11;18:50. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288919/
82.
Ford R, Schwartz L, Dancey J, Dodd LE, Eisenhauer EA, Gwyther S, et al. Lessons learned from independent central review. European Journal of Cancer [Internet]. 2009 Jan 1;45(2):268–74. Available from: https://www.ejcancer.com/article/S0959-8049(08)00879-4/fulltext
83.
Chen S, Cao Z, Prettner K, Kuhn M, Yang J, Jiao L, et al. Estimates and projections of the global economic cost of 29 cancers in 204 countries and territories from 2020 to 2050. JAMA Oncology [Internet]. 2023 Apr 1;9(4):465–72. Available from: https://doi.org/10.1001/jamaoncol.2022.7826
84.
Curtin SC, Tejada-Vera B, Bastian BA. Deaths: Leading Causes for 2020. National vital statistics reports. 2023 Dec 1;72(13):1–115.
85.
Ma Y, Wang Q, Dong Q, Zhan L, Zhang J. How to differentiate pseudoprogression from true progression in cancer patients treated with immunotherapy. American Journal of Cancer Research [Internet]. 2019 Aug 1;9(8):1546–53. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6726978/
86.
Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer [Internet]. 1981;47(1):207–14. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-0142%2819810101%2947%3A1%3C207%3A%3AAID-CNCR2820470134%3E3.0.CO%3B2-6
87.
Chakraborty S, Rahman T. The difficulties in cancer treatment. ecancermedicalscience [Internet]. 2012 Nov 14;6:ed16. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4024849/
88.
Liu B, Zhou H, Tan L, Siu KTH, Guan XY. Exploring treatment options in cancer: tumor treatment strategies. Signal Transduction and Targeted Therapy [Internet]. 2024 Jul 17;9(1):175. Available from: https://www.nature.com/articles/s41392-024-01856-7
89.
Siamof CM, Goel S, Cai W. Moving beyond the pillars of cancer treatment: Perspectives from nanotechnology. Frontiers in Chemistry [Internet]. 2020 Nov 10;8:598100. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7683771/
90.
Bailly C, Thuru X, Quesnel B. Combined cytotoxic chemotherapy and immunotherapy of cancer: Modern times. NAR Cancer [Internet]. 2020 Feb 17;2(1):zcaa002. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8209987/
91.
Sonkin D, Thomas A, Teicher BA. Cancer treatments: Past, present, and future. Cancer Genetics [Internet]. 2024 Aug 1;286-287:18–24. Available from: https://www.sciencedirect.com/science/article/pii/S2210776224000243
92.
Rodriguez-Brenes IA, Komarova NL, Wodarz D. Tumor growth dynamics: Insights into evolutionary processes. Trends in Ecology & Evolution [Internet]. 2013 Oct 1;28(10):597–604. Available from: https://www.sciencedirect.com/science/article/pii/S0169534713001420
93.
Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nature Reviews Clinical Oncology [Internet]. 2018 Feb;15(2):81–94. Available from: https://www.nature.com/articles/nrclinonc.2017.166
94.
Lim ZF, Ma PC. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. Journal of Hematology & Oncology [Internet]. 2019 Dec 9;12(1):134. Available from: https://doi.org/10.1186/s13045-019-0818-2
95.
Junod S. FDA and clinical drug trials: A short history. FDLI Update [Internet]. 2008;2008:55. Available from: https://heinonline.org/HOL/Page?handle=hein.journals/fdliup2008&id=123&div=&collection=
96.
Ahmed R. Ensuring Quality Medicine: A Comprehensive Overview of EMA and DGDA’s History, Structure, and Functions. RADINKA JOURNAL OF HEALTH SCIENCE [Internet]. 2024 Dec 31;2(2):254–66. Available from: https://rjupublisher.com/ojs/index.php/RJHS/article/view/362
97.
Brown DG, Wobst HJ, Kapoor A, Kenna LA, Southall NT. Clinical development times for innovative drugs. Nature reviews Drug discovery [Internet]. 2022 Nov;21(11):793–4. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9869766/
98.
Mahan VL. Clinical Trial Phases. International Journal of Clinical Medicine [Internet]. 2014 Dec 4;05(21):1374. Available from: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52733&#abstract
99.
Zhao B, Lee SM, Lee HJ, Tan Y, Qi J, Persigehl T, et al. Variability in assessing treatment response: Metastatic colorectal cancer as a paradigm. Clinical cancer research : an official journal of the American Association for Cancer Research [Internet]. 2014 Jul 1;20(13):3560–8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337392/
100.
Fleming TR, Powers JH. Biomarkers and surrogate endpoints in clinical trials. Statistics in medicine [Internet]. 2012 Nov 10;31(25):2973–84. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3551627/
101.
Kemp R, Prasad V. Surrogate endpoints in oncology: When are they acceptable for regulatory and clinical decisions, and are they currently overused? BMC Medicine [Internet]. 2017 Jul 21;15:134. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520356/
102.
Zettler M, Basch E, Nabhan C. Surrogate end points and patient-reported outcomes for novel oncology drugs approved between 2011 and 2017. JAMA Oncology [Internet]. 2019 Sep;5(9):1358–9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613294/
103.
Delgado A, Guddati AK. Clinical endpoints in oncology - a primer. American Journal of Cancer Research [Internet]. 2021 Apr 15;11(4):1121–31. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8085844/
104.
Dodd LE, Korn EL, Freidlin B, Jaffe CC, Rubinstein LV, Dancey J, et al. Blinded independent central review of progression-free survival in phase III clinical trials: important design element or unnecessary expense? Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2008 Aug 1;26(22):3791–6.
105.
Fournier L, Geus-Oei LF de, Regge D, Oprea-Lager DE, D’Anastasi M, Bidaut L, et al. Twenty years on: RECIST as a biomarker of response in solid tumours an EORTC imaging group ESOI joint paper. Frontiers in Oncology [Internet]. 2022 Jan 10;11:800547. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8784734/
106.
Gaind N. How the NIH dominates the worlds health research in charts. Nature [Internet]. 2025 Mar 10;639(8055):554–5. Available from: https://www.nature.com/articles/d41586-025-00754-4
107.
Revelle W. Psych: Procedures for psychological, psychometric, and personality research [Internet]. The R Foundation; 2007. Available from: http://dx.doi.org/10.32614/CRAN.package.psych
108.
Cochrane handbook for systematic reviews of interventions version 6.4 (updated august 2023). Cochrane, 2023 [Internet]. 2023. Available from: https://www.cochrane.org/authors/handbooks-and-manuals/handbook/current/chapter-13#section-13-3-5-6
109.
FENG C, WANG H, LU N, CHEN T, HE H, LU Y, et al. Log-transformation and its implications for data analysis. Shanghai Archives of Psychiatry [Internet]. 2014 Apr;26(2):105–9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4120293/